Spaces:
Runtime error
Runtime error
| import torch | |
| import logging | |
| logging.getLogger("numba").setLevel(logging.WARNING) | |
| from transformers import ( | |
| Wav2Vec2FeatureExtractor, | |
| HubertModel, | |
| ) | |
| import torch.nn as nn | |
| class CNHubert(nn.Module): | |
| def __init__(self, cnhubert_base_path): | |
| super().__init__() | |
| self.model = HubertModel.from_pretrained(cnhubert_base_path) | |
| self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
| cnhubert_base_path | |
| ) | |
| def forward(self, x): | |
| input_values = self.feature_extractor( | |
| x, return_tensors="pt", sampling_rate=16000 | |
| ).input_values.to(x.device) | |
| feats = self.model(input_values)["last_hidden_state"] | |
| return feats | |
| def get_content(hmodel, wav_16k_tensor): | |
| with torch.no_grad(): | |
| feats = hmodel(wav_16k_tensor) | |
| return feats.transpose(1, 2) | |