soiz1's picture
Upload 204 files
2f5f13b verified
raw
history blame
9.74 kB
import math
import torch
from rvc.lib.algorithm.commons import convert_pad_shape
class MultiHeadAttention(torch.nn.Module):
"""
Multi-head attention module with optional relative positional encoding and proximal bias.
Args:
channels (int): Number of input channels.
out_channels (int): Number of output channels.
n_heads (int): Number of attention heads.
p_dropout (float, optional): Dropout probability. Defaults to 0.0.
window_size (int, optional): Window size for relative positional encoding. Defaults to None.
heads_share (bool, optional): Whether to share relative positional embeddings across heads. Defaults to True.
block_length (int, optional): Block length for local attention. Defaults to None.
proximal_bias (bool, optional): Whether to use proximal bias in self-attention. Defaults to False.
proximal_init (bool, optional): Whether to initialize the key projection weights the same as query projection weights. Defaults to False.
"""
def __init__(
self,
channels: int,
out_channels: int,
n_heads: int,
p_dropout: float = 0.0,
window_size: int = None,
heads_share: bool = True,
block_length: int = None,
proximal_bias: bool = False,
proximal_init: bool = False,
):
super().__init__()
assert (
channels % n_heads == 0
), "Channels must be divisible by the number of heads."
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.k_channels = channels // n_heads
self.window_size = window_size
self.block_length = block_length
self.proximal_bias = proximal_bias
# Define projections
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
self.drop = torch.nn.Dropout(p_dropout)
# Relative positional encodings
if window_size:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = torch.nn.Parameter(
torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels)
* rel_stddev
)
self.emb_rel_v = torch.nn.Parameter(
torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels)
* rel_stddev
)
# Initialize weights
torch.nn.init.xavier_uniform_(self.conv_q.weight)
torch.nn.init.xavier_uniform_(self.conv_k.weight)
torch.nn.init.xavier_uniform_(self.conv_v.weight)
torch.nn.init.xavier_uniform_(self.conv_o.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
# Compute query, key, value projections
q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c)
# Compute attention
x, self.attn = self.attention(q, k, v, mask=attn_mask)
# Final output projection
return self.conv_o(x)
def attention(self, query, key, value, mask=None):
# Reshape and compute scaled dot-product attention
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size:
assert t_s == t_t, "Relative attention only supports self-attention."
scores += self._compute_relative_scores(query, t_s)
if self.proximal_bias:
assert t_s == t_t, "Proximal bias only supports self-attention."
scores += self._attention_bias_proximal(t_s).to(scores.device, scores.dtype)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length:
block_mask = (
torch.ones_like(scores)
.triu(-self.block_length)
.tril(self.block_length)
)
scores = scores.masked_fill(block_mask == 0, -1e4)
# Apply softmax and dropout
p_attn = self.drop(torch.nn.functional.softmax(scores, dim=-1))
# Compute attention output
output = torch.matmul(p_attn, value)
if self.window_size:
output += self._apply_relative_values(p_attn, t_s)
return output.transpose(2, 3).contiguous().view(b, d, t_t), p_attn
def _compute_relative_scores(self, query, length):
rel_emb = self._get_relative_embeddings(self.emb_rel_k, length)
rel_logits = self._matmul_with_relative_keys(
query / math.sqrt(self.k_channels), rel_emb
)
return self._relative_position_to_absolute_position(rel_logits)
def _apply_relative_values(self, p_attn, length):
rel_weights = self._absolute_position_to_relative_position(p_attn)
rel_emb = self._get_relative_embeddings(self.emb_rel_v, length)
return self._matmul_with_relative_values(rel_weights, rel_emb)
# Helper methods
def _matmul_with_relative_values(self, x, y):
return torch.matmul(x, y.unsqueeze(0))
def _matmul_with_relative_keys(self, x, y):
return torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
def _get_relative_embeddings(self, embeddings, length):
pad_length = max(length - (self.window_size + 1), 0)
start = max((self.window_size + 1) - length, 0)
end = start + 2 * length - 1
if pad_length > 0:
embeddings = torch.nn.functional.pad(
embeddings,
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
)
return embeddings[:, start:end]
def _relative_position_to_absolute_position(self, x):
batch, heads, length, _ = x.size()
x = torch.nn.functional.pad(
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
)
x_flat = x.view(batch, heads, length * 2 * length)
x_flat = torch.nn.functional.pad(
x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
)
return x_flat.view(batch, heads, length + 1, 2 * length - 1)[
:, :, :length, length - 1 :
]
def _absolute_position_to_relative_position(self, x):
batch, heads, length, _ = x.size()
x = torch.nn.functional.pad(
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
)
x_flat = x.view(batch, heads, length**2 + length * (length - 1))
x_flat = torch.nn.functional.pad(
x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])
)
return x_flat.view(batch, heads, length, 2 * length)[:, :, :, 1:]
def _attention_bias_proximal(self, length):
r = torch.arange(length, dtype=torch.float32)
diff = r.unsqueeze(0) - r.unsqueeze(1)
return -torch.log1p(torch.abs(diff)).unsqueeze(0).unsqueeze(0)
class FFN(torch.nn.Module):
"""
Feed-forward network module.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
filter_channels (int): Number of filter channels in the convolution layers.
kernel_size (int): Kernel size of the convolution layers.
p_dropout (float, optional): Dropout probability. Defaults to 0.0.
activation (str, optional): Activation function to use. Defaults to None.
causal (bool, optional): Whether to use causal padding in the convolution layers. Defaults to False.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
filter_channels: int,
kernel_size: int,
p_dropout: float = 0.0,
activation: str = None,
causal: bool = False,
):
super().__init__()
self.padding_fn = self._causal_padding if causal else self._same_padding
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = torch.nn.Dropout(p_dropout)
self.activation = activation
def forward(self, x, x_mask):
x = self.conv_1(self.padding_fn(x * x_mask))
x = self._apply_activation(x)
x = self.drop(x)
x = self.conv_2(self.padding_fn(x * x_mask))
return x * x_mask
def _apply_activation(self, x):
if self.activation == "gelu":
return x * torch.sigmoid(1.702 * x)
return torch.relu(x)
def _causal_padding(self, x):
pad_l, pad_r = self.conv_1.kernel_size[0] - 1, 0
return torch.nn.functional.pad(
x, convert_pad_shape([[0, 0], [0, 0], [pad_l, pad_r]])
)
def _same_padding(self, x):
pad = (self.conv_1.kernel_size[0] - 1) // 2
return torch.nn.functional.pad(
x, convert_pad_shape([[0, 0], [0, 0], [pad, pad]])
)