|
from abc import ABC
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from modules.diffusion_transformer import DiT
|
|
from modules.commons import sequence_mask
|
|
|
|
from tqdm import tqdm
|
|
|
|
class BASECFM(torch.nn.Module, ABC):
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
super().__init__()
|
|
self.sigma_min = 1e-6
|
|
|
|
self.estimator = None
|
|
|
|
self.in_channels = args.DiT.in_channels
|
|
|
|
self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss()
|
|
|
|
if hasattr(args.DiT, 'zero_prompt_speech_token'):
|
|
self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token
|
|
else:
|
|
self.zero_prompt_speech_token = False
|
|
|
|
@torch.inference_mode()
|
|
def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5):
|
|
"""Forward diffusion
|
|
|
|
Args:
|
|
mu (torch.Tensor): output of encoder
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
mask (torch.Tensor): output_mask
|
|
shape: (batch_size, 1, mel_timesteps)
|
|
n_timesteps (int): number of diffusion steps
|
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
|
shape: (batch_size, spk_emb_dim)
|
|
cond: Not used but kept for future purposes
|
|
|
|
Returns:
|
|
sample: generated mel-spectrogram
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
"""
|
|
B, T = mu.size(0), mu.size(1)
|
|
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
|
return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate)
|
|
|
|
def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5):
|
|
"""
|
|
Fixed euler solver for ODEs.
|
|
Args:
|
|
x (torch.Tensor): random noise
|
|
t_span (torch.Tensor): n_timesteps interpolated
|
|
shape: (n_timesteps + 1,)
|
|
mu (torch.Tensor): output of encoder
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
mask (torch.Tensor): output_mask
|
|
shape: (batch_size, 1, mel_timesteps)
|
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
|
shape: (batch_size, spk_emb_dim)
|
|
cond: Not used but kept for future purposes
|
|
"""
|
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
|
|
|
|
|
|
|
sol = []
|
|
|
|
prompt_len = prompt.size(-1)
|
|
prompt_x = torch.zeros_like(x)
|
|
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
|
|
x[..., :prompt_len] = 0
|
|
if self.zero_prompt_speech_token:
|
|
mu[..., :prompt_len] = 0
|
|
for step in tqdm(range(1, len(t_span))):
|
|
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu, f0)
|
|
|
|
if inference_cfg_rate > 0:
|
|
cfg_dphi_dt = self.estimator(
|
|
x, torch.zeros_like(prompt_x), x_lens, t.unsqueeze(0),
|
|
torch.zeros_like(style),
|
|
torch.zeros_like(mu), None
|
|
)
|
|
dphi_dt = ((1.0 + inference_cfg_rate) * dphi_dt -
|
|
inference_cfg_rate * cfg_dphi_dt)
|
|
x = x + dt * dphi_dt
|
|
t = t + dt
|
|
sol.append(x)
|
|
if step < len(t_span) - 1:
|
|
dt = t_span[step + 1] - t
|
|
x[:, :, :prompt_len] = 0
|
|
|
|
return sol[-1]
|
|
|
|
def forward(self, x1, x_lens, prompt_lens, mu, style, f0=None):
|
|
"""Computes diffusion loss
|
|
|
|
Args:
|
|
x1 (torch.Tensor): Target
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
mask (torch.Tensor): target mask
|
|
shape: (batch_size, 1, mel_timesteps)
|
|
mu (torch.Tensor): output of encoder
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
|
shape: (batch_size, spk_emb_dim)
|
|
|
|
Returns:
|
|
loss: conditional flow matching loss
|
|
y: conditional flow
|
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
"""
|
|
b, _, t = x1.shape
|
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
|
|
|
|
z = torch.randn_like(x1)
|
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
|
u = x1 - (1 - self.sigma_min) * z
|
|
|
|
prompt = torch.zeros_like(x1)
|
|
for bib in range(b):
|
|
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
|
|
|
|
y[bib, :, :prompt_lens[bib]] = 0
|
|
if self.zero_prompt_speech_token:
|
|
mu[bib, :, :prompt_lens[bib]] = 0
|
|
|
|
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(), style, mu, f0)
|
|
loss = 0
|
|
for bib in range(b):
|
|
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
|
|
loss /= b
|
|
|
|
return loss, y
|
|
|
|
|
|
|
|
class CFM(BASECFM):
|
|
def __init__(self, args):
|
|
super().__init__(
|
|
args
|
|
)
|
|
if args.dit_type == "DiT":
|
|
self.estimator = DiT(args)
|
|
else:
|
|
raise NotImplementedError(f"Unknown diffusion type {args.dit_type}")
|
|
|