Spaces:
Paused
Paused
SayaSS
commited on
Commit
·
cf0491a
1
Parent(s):
51d1e40
update
Browse files- .gitignore +3 -1
- README.md +1 -1
- app.py +88 -264
- logs/clara/G_4400.pth → pretrained_models/clara/clara.pth +0 -0
- {logs → pretrained_models}/clara/config.json +0 -0
- pretrained_models/info.json +14 -0
- {logs → pretrained_models}/kafka/config.json +0 -0
- logs/kafka/G_4000.pth → pretrained_models/kafka/kafka.pth +0 -0
- server.py +0 -170
- text/__init__.py +1 -3
.gitignore
CHANGED
|
@@ -165,4 +165,6 @@ cython_debug/
|
|
| 165 |
filelists/*
|
| 166 |
!/filelists/esd.list
|
| 167 |
data/*
|
| 168 |
-
/infer_save
|
|
|
|
|
|
|
|
|
| 165 |
filelists/*
|
| 166 |
!/filelists/esd.list
|
| 167 |
data/*
|
| 168 |
+
/infer_save
|
| 169 |
+
|
| 170 |
+
.idea
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 📊
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: green
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Bert Vits2
|
| 3 |
emoji: 📊
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: green
|
app.py
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import sys, os
|
| 4 |
import logging
|
| 5 |
import os
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
import
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 12 |
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
|
@@ -18,29 +23,11 @@ logging.basicConfig(
|
|
| 18 |
)
|
| 19 |
|
| 20 |
logger = logging.getLogger(__name__)
|
|
|
|
| 21 |
|
| 22 |
-
import torch
|
| 23 |
-
import argparse
|
| 24 |
-
import commons
|
| 25 |
-
import utils
|
| 26 |
-
from models import SynthesizerTrn
|
| 27 |
-
from text.symbols import symbols
|
| 28 |
-
from text import cleaned_text_to_sequence, get_bert
|
| 29 |
-
from text.cleaner import clean_text
|
| 30 |
-
import gradio as gr
|
| 31 |
-
import webbrowser
|
| 32 |
-
import numpy as np
|
| 33 |
-
|
| 34 |
-
net_g = None
|
| 35 |
-
|
| 36 |
-
if sys.platform == "darwin" and torch.backends.mps.is_available():
|
| 37 |
-
device = "mps"
|
| 38 |
-
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 39 |
-
else:
|
| 40 |
-
device = "cuda"
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
| 45 |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
| 46 |
|
|
@@ -55,15 +42,8 @@ def get_text(text, language_str, hps):
|
|
| 55 |
del word2ph
|
| 56 |
assert bert.shape[-1] == len(phone), phone
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
ja_bert = torch.zeros(768, len(phone))
|
| 61 |
-
elif language_str == "JP":
|
| 62 |
-
ja_bert = bert
|
| 63 |
-
bert = torch.zeros(1024, len(phone))
|
| 64 |
-
else:
|
| 65 |
-
bert = torch.zeros(1024, len(phone))
|
| 66 |
-
ja_bert = torch.zeros(768, len(phone))
|
| 67 |
|
| 68 |
assert bert.shape[-1] == len(
|
| 69 |
phone
|
|
@@ -75,9 +55,8 @@ def get_text(text, language_str, hps):
|
|
| 75 |
return bert, ja_bert, phone, tone, language
|
| 76 |
|
| 77 |
|
| 78 |
-
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid,
|
| 79 |
-
|
| 80 |
-
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
| 81 |
with torch.no_grad():
|
| 82 |
x_tst = phones.to(device).unsqueeze(0)
|
| 83 |
tones = tones.to(device).unsqueeze(0)
|
|
@@ -85,14 +64,13 @@ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, langua
|
|
| 85 |
bert = bert.to(device).unsqueeze(0)
|
| 86 |
ja_bert = ja_bert.to(device).unsqueeze(0)
|
| 87 |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
| 88 |
-
#print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
|
| 89 |
del phones
|
| 90 |
-
|
| 91 |
audio = (
|
| 92 |
-
|
| 93 |
x_tst,
|
| 94 |
x_tst_lengths,
|
| 95 |
-
|
| 96 |
tones,
|
| 97 |
lang_ids,
|
| 98 |
bert,
|
|
@@ -106,108 +84,25 @@ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, langua
|
|
| 106 |
.float()
|
| 107 |
.numpy()
|
| 108 |
)
|
| 109 |
-
del x_tst, tones, lang_ids, bert, x_tst_lengths,
|
| 110 |
-
torch.cuda.empty_cache()
|
| 111 |
-
return audio
|
| 112 |
-
|
| 113 |
-
def infer_2(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
| 114 |
-
global net_g_2
|
| 115 |
-
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
| 116 |
-
with torch.no_grad():
|
| 117 |
-
x_tst = phones.to(device).unsqueeze(0)
|
| 118 |
-
tones = tones.to(device).unsqueeze(0)
|
| 119 |
-
lang_ids = lang_ids.to(device).unsqueeze(0)
|
| 120 |
-
bert = bert.to(device).unsqueeze(0)
|
| 121 |
-
ja_bert = ja_bert.to(device).unsqueeze(0)
|
| 122 |
-
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
| 123 |
-
#print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
|
| 124 |
-
del phones
|
| 125 |
-
speakers = torch.LongTensor([hps_2.data.spk2id[sid]]).to(device)
|
| 126 |
-
audio = (
|
| 127 |
-
net_g_2.infer(
|
| 128 |
-
x_tst,
|
| 129 |
-
x_tst_lengths,
|
| 130 |
-
speakers,
|
| 131 |
-
tones,
|
| 132 |
-
lang_ids,
|
| 133 |
-
bert,
|
| 134 |
-
ja_bert,
|
| 135 |
-
sdp_ratio=sdp_ratio,
|
| 136 |
-
noise_scale=noise_scale,
|
| 137 |
-
noise_scale_w=noise_scale_w,
|
| 138 |
-
length_scale=length_scale,
|
| 139 |
-
)[0][0, 0]
|
| 140 |
-
.data.cpu()
|
| 141 |
-
.float()
|
| 142 |
-
.numpy()
|
| 143 |
-
)
|
| 144 |
-
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
|
| 145 |
torch.cuda.empty_cache()
|
| 146 |
return audio
|
| 147 |
|
| 148 |
-
|
| 149 |
-
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
assert len(slice) < 150 # 限制输入的文本长度
|
| 162 |
-
if from_model == 0:
|
| 163 |
-
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
|
| 164 |
-
else:
|
| 165 |
-
audio = infer_2(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
|
| 166 |
-
audio_list.append(audio)
|
| 167 |
-
|
| 168 |
-
# 创建唯一的文件名
|
| 169 |
-
timestamp = str(int(time.time() * 1000))
|
| 170 |
-
audio_file_path = f'./infer_save/audio_{timestamp}.wav'
|
| 171 |
-
|
| 172 |
-
# 保存音频数据到.wav文件
|
| 173 |
-
wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
|
| 174 |
-
|
| 175 |
-
silence = np.zeros(hps.data.sampling_rate, dtype=np.int16) # 生成1秒的静音
|
| 176 |
-
audio_list.append(silence) # 将静音添加到列表中
|
| 177 |
-
|
| 178 |
-
f.write(f"{slice} | {speaker}\n")
|
| 179 |
-
print(f"{slice} | {speaker}")
|
| 180 |
-
|
| 181 |
-
audio_concat = np.concatenate(audio_list)
|
| 182 |
-
return "Success", (hps.data.sampling_rate, audio_concat)
|
| 183 |
-
def tts_fn_2(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model=1):
|
| 184 |
-
return tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model)
|
| 185 |
|
| 186 |
if __name__ == "__main__":
|
| 187 |
-
parser = argparse.ArgumentParser()
|
| 188 |
-
parser.add_argument(
|
| 189 |
-
"-m", "--model", default="./logs/natuki/G_72000.pth", help="path of your model"
|
| 190 |
-
)
|
| 191 |
-
parser.add_argument(
|
| 192 |
-
"-c",
|
| 193 |
-
"--config",
|
| 194 |
-
default="./configs/config.json",
|
| 195 |
-
help="path of your config file",
|
| 196 |
-
)
|
| 197 |
-
parser.add_argument(
|
| 198 |
-
"--share", default=False, help="make link public", action="store_true"
|
| 199 |
-
)
|
| 200 |
-
parser.add_argument(
|
| 201 |
-
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
args = parser.parse_args()
|
| 205 |
-
if args.debug:
|
| 206 |
-
logger.info("Enable DEBUG-LEVEL log")
|
| 207 |
-
logging.basicConfig(level=logging.DEBUG)
|
| 208 |
-
hps = utils.get_hparams_from_file("./logs/umamusume/config.json")
|
| 209 |
-
hps_2 = utils.get_hparams_from_file("./logs/natuki/config.json")
|
| 210 |
-
|
| 211 |
device = (
|
| 212 |
"cuda:0"
|
| 213 |
if torch.cuda.is_available()
|
|
@@ -217,128 +112,57 @@ if __name__ == "__main__":
|
|
| 217 |
else "cpu"
|
| 218 |
)
|
| 219 |
)
|
| 220 |
-
net_g = SynthesizerTrn(
|
| 221 |
-
len(symbols),
|
| 222 |
-
hps.data.filter_length // 2 + 1,
|
| 223 |
-
hps.train.segment_size // hps.data.hop_length,
|
| 224 |
-
n_speakers=hps.data.n_speakers,
|
| 225 |
-
**hps.model,
|
| 226 |
-
).to(device)
|
| 227 |
-
_ = net_g.eval()
|
| 228 |
-
|
| 229 |
-
net_g_2 = SynthesizerTrn(
|
| 230 |
-
len(symbols),
|
| 231 |
-
hps.data.filter_length // 2 + 1,
|
| 232 |
-
hps.train.segment_size // hps.data.hop_length,
|
| 233 |
-
n_speakers=hps.data.n_speakers,
|
| 234 |
-
**hps.model,
|
| 235 |
-
).to(device)
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
languages = ["ZH", "JP"]
|
| 247 |
-
with gr.Blocks() as app:
|
| 248 |
-
with gr.Tab(label="umamusume"):
|
| 249 |
-
with gr.Row():
|
| 250 |
-
with gr.Column():
|
| 251 |
-
text = gr.TextArea(
|
| 252 |
-
label="Text",
|
| 253 |
-
placeholder="Input Text Here",
|
| 254 |
-
value="はりきっていこう!",
|
| 255 |
-
)
|
| 256 |
-
speaker = gr.Dropdown(
|
| 257 |
-
choices=speakers, value=speakers[0], label="Speaker"
|
| 258 |
-
)
|
| 259 |
-
sdp_ratio = gr.Slider(
|
| 260 |
-
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
|
| 261 |
-
)
|
| 262 |
-
noise_scale = gr.Slider(
|
| 263 |
-
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
|
| 264 |
-
)
|
| 265 |
-
noise_scale_w = gr.Slider(
|
| 266 |
-
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
|
| 267 |
-
)
|
| 268 |
-
length_scale = gr.Slider(
|
| 269 |
-
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
|
| 270 |
-
)
|
| 271 |
-
language = gr.Dropdown(
|
| 272 |
-
choices=languages, value=languages[1], label="Language"
|
| 273 |
-
)
|
| 274 |
-
btn = gr.Button("Generate!", variant="primary")
|
| 275 |
-
with gr.Column():
|
| 276 |
-
text_output = gr.Textbox(label="Message")
|
| 277 |
-
audio_output = gr.Audio(label="Output Audio")
|
| 278 |
-
gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
|
| 279 |
-
"Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
|
| 280 |
-
"- 本项目在日语方面有所欠缺,特别是音调的设计上,需要帮助。\n"
|
| 281 |
-
"- このプロジェクトは、日本語の方面で不足しています。特に、音調の設計に関して助けが欲しいです。")
|
| 282 |
-
|
| 283 |
-
btn.click(
|
| 284 |
-
tts_fn,
|
| 285 |
-
inputs=[
|
| 286 |
-
text,
|
| 287 |
-
speaker,
|
| 288 |
-
sdp_ratio,
|
| 289 |
-
noise_scale,
|
| 290 |
-
noise_scale_w,
|
| 291 |
-
length_scale,
|
| 292 |
-
language,
|
| 293 |
-
],
|
| 294 |
-
outputs=[text_output, audio_output],
|
| 295 |
-
)
|
| 296 |
-
with gr.Tab(label="natuki"):
|
| 297 |
-
with gr.Row():
|
| 298 |
-
with gr.Column():
|
| 299 |
-
text2 = gr.TextArea(
|
| 300 |
-
label="Text",
|
| 301 |
-
placeholder="Input Text Here",
|
| 302 |
-
value="はりきっていこう!",
|
| 303 |
-
)
|
| 304 |
-
speaker2 = gr.Dropdown(
|
| 305 |
-
choices=speakers_2, value=speakers_2[0], label="Speaker"
|
| 306 |
-
)
|
| 307 |
-
sdp_ratio2 = gr.Slider(
|
| 308 |
-
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
|
| 309 |
-
)
|
| 310 |
-
noise_scale2 = gr.Slider(
|
| 311 |
-
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
|
| 312 |
-
)
|
| 313 |
-
noise_scale_w2 = gr.Slider(
|
| 314 |
-
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
|
| 315 |
-
)
|
| 316 |
-
length_scale2 = gr.Slider(
|
| 317 |
-
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
|
| 318 |
-
)
|
| 319 |
-
language2 = gr.Dropdown(
|
| 320 |
-
choices=languages, value=languages[1], label="Language"
|
| 321 |
-
)
|
| 322 |
-
btn2 = gr.Button("Generate!", variant="primary")
|
| 323 |
-
with gr.Column():
|
| 324 |
-
text_output2 = gr.Textbox(label="Message")
|
| 325 |
-
audio_output2 = gr.Audio(label="Output Audio")
|
| 326 |
-
gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
|
| 327 |
-
"Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
|
| 328 |
-
"- 本项目在日语方面有所欠缺,特别是音调的设计上,需要帮助。\n"
|
| 329 |
-
"- このプロジェクトは、日本語の方面で不足しています。特に、音調の設計に関して助けが欲しいです。")
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
|
|
|
|
|
|
| 2 |
import logging
|
| 3 |
import os
|
| 4 |
+
import json
|
| 5 |
+
import torch
|
| 6 |
+
import argparse
|
| 7 |
+
import commons
|
| 8 |
+
import utils
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
from models import SynthesizerTrn
|
| 12 |
+
from text.symbols import symbols
|
| 13 |
+
from text import cleaned_text_to_sequence, get_bert
|
| 14 |
+
from text.cleaner import clean_text
|
| 15 |
|
| 16 |
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 17 |
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
+
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def get_text(text, hps):
|
| 30 |
+
language_str = "JP"
|
| 31 |
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
| 32 |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
| 33 |
|
|
|
|
| 42 |
del word2ph
|
| 43 |
assert bert.shape[-1] == len(phone), phone
|
| 44 |
|
| 45 |
+
ja_bert = bert
|
| 46 |
+
bert = torch.zeros(1024, len(phone))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
assert bert.shape[-1] == len(
|
| 49 |
phone
|
|
|
|
| 55 |
return bert, ja_bert, phone, tone, language
|
| 56 |
|
| 57 |
|
| 58 |
+
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, net_g_ms, hps):
|
| 59 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, hps)
|
|
|
|
| 60 |
with torch.no_grad():
|
| 61 |
x_tst = phones.to(device).unsqueeze(0)
|
| 62 |
tones = tones.to(device).unsqueeze(0)
|
|
|
|
| 64 |
bert = bert.to(device).unsqueeze(0)
|
| 65 |
ja_bert = ja_bert.to(device).unsqueeze(0)
|
| 66 |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
|
|
|
| 67 |
del phones
|
| 68 |
+
sid = torch.LongTensor([sid]).to(device)
|
| 69 |
audio = (
|
| 70 |
+
net_g_ms.infer(
|
| 71 |
x_tst,
|
| 72 |
x_tst_lengths,
|
| 73 |
+
sid,
|
| 74 |
tones,
|
| 75 |
lang_ids,
|
| 76 |
bert,
|
|
|
|
| 84 |
.float()
|
| 85 |
.numpy()
|
| 86 |
)
|
| 87 |
+
del x_tst, tones, lang_ids, bert, x_tst_lengths, sid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
torch.cuda.empty_cache()
|
| 89 |
return audio
|
| 90 |
|
| 91 |
+
def create_tts_fn(net_g_ms, hps):
|
| 92 |
+
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
|
| 93 |
+
print(f"{text} | {speaker}")
|
| 94 |
+
sid = hps.data.spk2id[speaker]
|
| 95 |
+
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
|
| 96 |
+
if limitation:
|
| 97 |
+
max_len = 100
|
| 98 |
+
if len(text) > max_len:
|
| 99 |
+
return "Error: Text is too long", None
|
| 100 |
+
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
|
| 101 |
+
length_scale=length_scale, sid=sid, net_g_ms=net_g_ms, hps=hps)
|
| 102 |
+
return "Success", (hps.data.sampling_rate, audio)
|
| 103 |
+
return tts_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
device = (
|
| 107 |
"cuda:0"
|
| 108 |
if torch.cuda.is_available()
|
|
|
|
| 112 |
else "cpu"
|
| 113 |
)
|
| 114 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
parser = argparse.ArgumentParser()
|
| 117 |
+
parser.add_argument("--share", default=False, help="make link public", action="store_true")
|
| 118 |
+
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
|
| 119 |
+
args = parser.parse_args()
|
| 120 |
+
if args.debug:
|
| 121 |
+
logger.info("Enable DEBUG-LEVEL log")
|
| 122 |
+
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
models = []
|
| 125 |
+
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
|
| 126 |
+
models_info = json.load(f)
|
| 127 |
+
for i, info in models_info.items():
|
| 128 |
+
if not info['enable']:
|
| 129 |
+
continue
|
| 130 |
+
name = info['name']
|
| 131 |
+
title = info['title']
|
| 132 |
+
example = info['example']
|
| 133 |
+
hps = utils.get_hparams_from_file(f"./pretrained_models/{name}/config.json")
|
| 134 |
+
net_g_ms = SynthesizerTrn(
|
| 135 |
+
len(symbols),
|
| 136 |
+
hps.data.filter_length // 2 + 1,
|
| 137 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 138 |
+
n_speakers=hps.data.n_speakers,
|
| 139 |
+
**hps.model)
|
| 140 |
+
utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None, skip_optimizer=True)
|
| 141 |
+
_ = net_g_ms.eval().to(device)
|
| 142 |
+
models.append((name, title, example, list(hps.data.spk2id.keys()), net_g_ms, create_tts_fn(net_g_ms, hps)))
|
| 143 |
+
with gr.Blocks(theme='NoCrypt/miku') as app:
|
| 144 |
+
with gr.Tabs():
|
| 145 |
+
for (name, title, example, speakers, net_g_ms, tts_fn) in models:
|
| 146 |
+
with gr.TabItem(name):
|
| 147 |
+
with gr.Row():
|
| 148 |
+
gr.Markdown(
|
| 149 |
+
'<div align="center">'
|
| 150 |
+
f'<a><strong>{title}</strong></a>'
|
| 151 |
+
f'</div>'
|
| 152 |
+
)
|
| 153 |
+
with gr.Row():
|
| 154 |
+
with gr.Column():
|
| 155 |
+
input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example)
|
| 156 |
+
btn = gr.Button(value="Generate", variant="primary")
|
| 157 |
+
with gr.Row():
|
| 158 |
+
sp = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
|
| 159 |
+
with gr.Row():
|
| 160 |
+
sdpr = gr.Slider(label="SDP Ratio", minimum=0, maximum=1, step=0.1, value=0.2)
|
| 161 |
+
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6)
|
| 162 |
+
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.8)
|
| 163 |
+
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1)
|
| 164 |
+
with gr.Column():
|
| 165 |
+
o1 = gr.Textbox(label="Output Message")
|
| 166 |
+
o2 = gr.Audio(label="Output Audio")
|
| 167 |
+
btn.click(tts_fn, inputs=[input_text, sp, sdpr, ns, nsw, ls], outputs=[o1, o2])
|
| 168 |
+
app.queue(concurrency_count=1).launch(share=args.share)
|
logs/clara/G_4400.pth → pretrained_models/clara/clara.pth
RENAMED
|
File without changes
|
{logs → pretrained_models}/clara/config.json
RENAMED
|
File without changes
|
pretrained_models/info.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"kafka": {
|
| 3 |
+
"enable": true,
|
| 4 |
+
"name": "kafka",
|
| 5 |
+
"title": "Honkai: Star Rail-カフカ",
|
| 6 |
+
"example": "嗅ぎます?この子は、特に香りもいいんです。艶があるっていうのかなぁ。とにかく、絶対に嗅いだ方がいい。ほら、どうです?"
|
| 7 |
+
},
|
| 8 |
+
"clara": {
|
| 9 |
+
"enable": true,
|
| 10 |
+
"name": "clara",
|
| 11 |
+
"title": "Honkai: Star Rail-クラーラ",
|
| 12 |
+
"example": "ーーーチャンスって何の?誰?どこから話してる?"
|
| 13 |
+
}
|
| 14 |
+
}
|
{logs → pretrained_models}/kafka/config.json
RENAMED
|
File without changes
|
logs/kafka/G_4000.pth → pretrained_models/kafka/kafka.pth
RENAMED
|
File without changes
|
server.py
DELETED
|
@@ -1,170 +0,0 @@
|
|
| 1 |
-
from flask import Flask, request, Response
|
| 2 |
-
from io import BytesIO
|
| 3 |
-
import torch
|
| 4 |
-
from av import open as avopen
|
| 5 |
-
|
| 6 |
-
import commons
|
| 7 |
-
import utils
|
| 8 |
-
from models import SynthesizerTrn
|
| 9 |
-
from text.symbols import symbols
|
| 10 |
-
from text import cleaned_text_to_sequence, get_bert
|
| 11 |
-
from text.cleaner import clean_text
|
| 12 |
-
from scipy.io import wavfile
|
| 13 |
-
|
| 14 |
-
# Flask Init
|
| 15 |
-
app = Flask(__name__)
|
| 16 |
-
app.config["JSON_AS_ASCII"] = False
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def get_text(text, language_str, hps):
|
| 20 |
-
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
| 21 |
-
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
| 22 |
-
|
| 23 |
-
if hps.data.add_blank:
|
| 24 |
-
phone = commons.intersperse(phone, 0)
|
| 25 |
-
tone = commons.intersperse(tone, 0)
|
| 26 |
-
language = commons.intersperse(language, 0)
|
| 27 |
-
for i in range(len(word2ph)):
|
| 28 |
-
word2ph[i] = word2ph[i] * 2
|
| 29 |
-
word2ph[0] += 1
|
| 30 |
-
bert = get_bert(norm_text, word2ph, language_str)
|
| 31 |
-
del word2ph
|
| 32 |
-
assert bert.shape[-1] == len(phone), phone
|
| 33 |
-
|
| 34 |
-
if language_str == "ZH":
|
| 35 |
-
bert = bert
|
| 36 |
-
ja_bert = torch.zeros(768, len(phone))
|
| 37 |
-
elif language_str == "JA":
|
| 38 |
-
ja_bert = bert
|
| 39 |
-
bert = torch.zeros(1024, len(phone))
|
| 40 |
-
else:
|
| 41 |
-
bert = torch.zeros(1024, len(phone))
|
| 42 |
-
ja_bert = torch.zeros(768, len(phone))
|
| 43 |
-
assert bert.shape[-1] == len(
|
| 44 |
-
phone
|
| 45 |
-
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
| 46 |
-
phone = torch.LongTensor(phone)
|
| 47 |
-
tone = torch.LongTensor(tone)
|
| 48 |
-
language = torch.LongTensor(language)
|
| 49 |
-
return bert, ja_bert, phone, tone, language
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
| 53 |
-
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
| 54 |
-
with torch.no_grad():
|
| 55 |
-
x_tst = phones.to(dev).unsqueeze(0)
|
| 56 |
-
tones = tones.to(dev).unsqueeze(0)
|
| 57 |
-
lang_ids = lang_ids.to(dev).unsqueeze(0)
|
| 58 |
-
bert = bert.to(dev).unsqueeze(0)
|
| 59 |
-
ja_bert = ja_bert.to(device).unsqueeze(0)
|
| 60 |
-
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
|
| 61 |
-
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
|
| 62 |
-
audio = (
|
| 63 |
-
net_g.infer(
|
| 64 |
-
x_tst,
|
| 65 |
-
x_tst_lengths,
|
| 66 |
-
speakers,
|
| 67 |
-
tones,
|
| 68 |
-
lang_ids,
|
| 69 |
-
bert,
|
| 70 |
-
ja_bert,
|
| 71 |
-
sdp_ratio=sdp_ratio,
|
| 72 |
-
noise_scale=noise_scale,
|
| 73 |
-
noise_scale_w=noise_scale_w,
|
| 74 |
-
length_scale=length_scale,
|
| 75 |
-
)[0][0, 0]
|
| 76 |
-
.data.cpu()
|
| 77 |
-
.float()
|
| 78 |
-
.numpy()
|
| 79 |
-
)
|
| 80 |
-
return audio
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def replace_punctuation(text, i=2):
|
| 84 |
-
punctuation = ",。?!"
|
| 85 |
-
for char in punctuation:
|
| 86 |
-
text = text.replace(char, char * i)
|
| 87 |
-
return text
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def wav2(i, o, format):
|
| 91 |
-
inp = avopen(i, "rb")
|
| 92 |
-
out = avopen(o, "wb", format=format)
|
| 93 |
-
if format == "ogg":
|
| 94 |
-
format = "libvorbis"
|
| 95 |
-
|
| 96 |
-
ostream = out.add_stream(format)
|
| 97 |
-
|
| 98 |
-
for frame in inp.decode(audio=0):
|
| 99 |
-
for p in ostream.encode(frame):
|
| 100 |
-
out.mux(p)
|
| 101 |
-
|
| 102 |
-
for p in ostream.encode(None):
|
| 103 |
-
out.mux(p)
|
| 104 |
-
|
| 105 |
-
out.close()
|
| 106 |
-
inp.close()
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# Load Generator
|
| 110 |
-
hps = utils.get_hparams_from_file("./configs/config.json")
|
| 111 |
-
|
| 112 |
-
dev = "cuda"
|
| 113 |
-
net_g = SynthesizerTrn(
|
| 114 |
-
len(symbols),
|
| 115 |
-
hps.data.filter_length // 2 + 1,
|
| 116 |
-
hps.train.segment_size // hps.data.hop_length,
|
| 117 |
-
n_speakers=hps.data.n_speakers,
|
| 118 |
-
**hps.model,
|
| 119 |
-
).to(dev)
|
| 120 |
-
_ = net_g.eval()
|
| 121 |
-
|
| 122 |
-
_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None, skip_optimizer=True)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
@app.route("/")
|
| 126 |
-
def main():
|
| 127 |
-
try:
|
| 128 |
-
speaker = request.args.get("speaker")
|
| 129 |
-
text = request.args.get("text").replace("/n", "")
|
| 130 |
-
sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
|
| 131 |
-
noise = float(request.args.get("noise", 0.5))
|
| 132 |
-
noisew = float(request.args.get("noisew", 0.6))
|
| 133 |
-
length = float(request.args.get("length", 1.2))
|
| 134 |
-
language = request.args.get("language")
|
| 135 |
-
if length >= 2:
|
| 136 |
-
return "Too big length"
|
| 137 |
-
if len(text) >= 250:
|
| 138 |
-
return "Too long text"
|
| 139 |
-
fmt = request.args.get("format", "wav")
|
| 140 |
-
if None in (speaker, text):
|
| 141 |
-
return "Missing Parameter"
|
| 142 |
-
if fmt not in ("mp3", "wav", "ogg"):
|
| 143 |
-
return "Invalid Format"
|
| 144 |
-
if language not in ("JA", "ZH"):
|
| 145 |
-
return "Invalid language"
|
| 146 |
-
except:
|
| 147 |
-
return "Invalid Parameter"
|
| 148 |
-
|
| 149 |
-
with torch.no_grad():
|
| 150 |
-
audio = infer(
|
| 151 |
-
text,
|
| 152 |
-
sdp_ratio=sdp_ratio,
|
| 153 |
-
noise_scale=noise,
|
| 154 |
-
noise_scale_w=noisew,
|
| 155 |
-
length_scale=length,
|
| 156 |
-
sid=speaker,
|
| 157 |
-
language=language,
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
with BytesIO() as wav:
|
| 161 |
-
wavfile.write(wav, hps.data.sampling_rate, audio)
|
| 162 |
-
torch.cuda.empty_cache()
|
| 163 |
-
if fmt == "wav":
|
| 164 |
-
return Response(wav.getvalue(), mimetype="audio/wav")
|
| 165 |
-
wav.seek(0, 0)
|
| 166 |
-
with BytesIO() as ofp:
|
| 167 |
-
wav2(wav, ofp, fmt)
|
| 168 |
-
return Response(
|
| 169 |
-
ofp.getvalue(), mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
|
| 170 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text/__init__.py
CHANGED
|
@@ -19,10 +19,8 @@ def cleaned_text_to_sequence(cleaned_text, tones, language):
|
|
| 19 |
|
| 20 |
|
| 21 |
def get_bert(norm_text, word2ph, language, device):
|
| 22 |
-
from .chinese_bert import get_bert_feature as zh_bert
|
| 23 |
-
from .english_bert_mock import get_bert_feature as en_bert
|
| 24 |
from .japanese_bert import get_bert_feature as jp_bert
|
| 25 |
|
| 26 |
-
lang_bert_func_map = {"
|
| 27 |
bert = lang_bert_func_map[language](norm_text, word2ph, device)
|
| 28 |
return bert
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
def get_bert(norm_text, word2ph, language, device):
|
|
|
|
|
|
|
| 22 |
from .japanese_bert import get_bert_feature as jp_bert
|
| 23 |
|
| 24 |
+
lang_bert_func_map = {"JP": jp_bert}
|
| 25 |
bert = lang_bert_func_map[language](norm_text, word2ph, device)
|
| 26 |
return bert
|