|
import os |
|
from flask import Flask, request, send_file |
|
from io import BytesIO |
|
from PIL import Image, ImageChops |
|
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler |
|
import torch |
|
|
|
|
|
app = Flask(__name__) |
|
|
|
|
|
models_load = {} |
|
|
|
def load_model(model_name): |
|
global models_load |
|
if model_name not in models_load: |
|
try: |
|
scheduler = EulerDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler") |
|
pipe = StableDiffusionPipeline.from_pretrained(model_name, scheduler=scheduler, torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
models_load[model_name] = pipe |
|
print(f"Model {model_name} loaded successfully.") |
|
except Exception as error: |
|
print(f"Error loading model {model_name}: {error}") |
|
models_load[model_name] = None |
|
|
|
def gen_fn(model_str, prompt, negative_prompt=None, noise=None, cfg_scale=None, num_inference_steps=None): |
|
if model_str not in models_load: |
|
load_model(model_str) |
|
|
|
if model_str in models_load and models_load[model_str] is not None: |
|
if noise == "random": |
|
noise = str(randint(0, 99999999999)) |
|
full_prompt = f'{prompt} {noise}' if noise else prompt |
|
|
|
print(f"Prompt: {full_prompt}") |
|
|
|
try: |
|
|
|
result = models_load[model_str](full_prompt, num_inference_steps=num_inference_steps) |
|
image = result.images[0] |
|
|
|
|
|
black = Image.new('RGB', image.size, (0, 0, 0)) |
|
if ImageChops.difference(image, black).getbbox() is None: |
|
return None, 'The image is completely black.' |
|
|
|
return image, None |
|
|
|
except Exception as e: |
|
print("Error generating image:", e) |
|
return None, f"Error generating image: {e}" |
|
else: |
|
print(f"Model {model_str} not found") |
|
return None, f"Model {model_str} not found" |
|
|
|
@app.route('/', methods=['GET']) |
|
def home(): |
|
prompt = request.args.get('prompt', '') |
|
model = request.args.get('model', '') |
|
noise = request.args.get('noise', None) |
|
num_inference_steps = request.args.get('steps', 50) |
|
|
|
try: |
|
num_inference_steps = int(num_inference_steps) |
|
except ValueError: |
|
return 'Invalid "steps" parameter. It should be an integer.', 400 |
|
|
|
if not model: |
|
return 'Please provide a "model" query parameter in the URL.', 400 |
|
|
|
if not prompt: |
|
return 'Please provide a "prompt" query parameter in the URL.', 400 |
|
|
|
|
|
image, error_message = gen_fn(model, prompt, noise=noise, num_inference_steps=num_inference_steps) |
|
if error_message: |
|
return error_message, 400 |
|
|
|
if isinstance(image, Image.Image): |
|
img_io = BytesIO() |
|
image.save(img_io, format='PNG') |
|
img_io.seek(0) |
|
return send_file(img_io, mimetype='image/png', as_attachment=False) |
|
|
|
return 'Failed to generate image.', 500 |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=7860) |
|
|