|
from queue import Queue |
|
from threading import Thread |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
from flask import Flask, request, jsonify, send_file |
|
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed |
|
from transformers.generation.streamers import BaseStreamer |
|
import io |
|
import soundfile as sf |
|
|
|
|
|
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") |
|
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small") |
|
|
|
class MusicgenStreamer(BaseStreamer): |
|
def __init__( |
|
self, |
|
model: MusicgenForConditionalGeneration, |
|
device: Optional[str] = None, |
|
play_steps: Optional[int] = 10, |
|
stride: Optional[int] = None, |
|
timeout: Optional[float] = None, |
|
): |
|
self.decoder = model.decoder |
|
self.audio_encoder = model.audio_encoder |
|
self.generation_config = model.generation_config |
|
self.device = device if device is not None else model.device |
|
|
|
self.play_steps = play_steps |
|
if stride is not None: |
|
self.stride = stride |
|
else: |
|
hop_length = np.prod(self.audio_encoder.config.upsampling_ratios) |
|
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6 |
|
self.token_cache = None |
|
self.to_yield = 0 |
|
|
|
self.audio_queue = Queue() |
|
self.stop_signal = None |
|
self.timeout = timeout |
|
|
|
def apply_delay_pattern_mask(self, input_ids): |
|
_, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( |
|
input_ids[:, :1], |
|
pad_token_id=self.generation_config.decoder_start_token_id, |
|
max_length=input_ids.shape[-1], |
|
) |
|
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask) |
|
|
|
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape( |
|
1, self.decoder.num_codebooks, -1 |
|
) |
|
|
|
input_ids = input_ids[None, ...] |
|
input_ids = input_ids.to(self.audio_encoder.device) |
|
|
|
output_values = self.audio_encoder.decode( |
|
input_ids, |
|
audio_scales=[None], |
|
) |
|
audio_values = output_values.audio_values[0, 0] |
|
return audio_values.cpu().float().numpy() |
|
|
|
def put(self, value): |
|
batch_size = value.shape[0] // self.decoder.num_codebooks |
|
if batch_size > 1: |
|
raise ValueError("MusicgenStreamer only supports batch size 1") |
|
|
|
if self.token_cache is None: |
|
self.token_cache = value |
|
else: |
|
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1) |
|
|
|
if self.token_cache.shape[-1] % self.play_steps == 0: |
|
audio_values = self.apply_delay_pattern_mask(self.token_cache) |
|
self.on_finalized_audio(audio_values[self.to_yield : -self.stride]) |
|
self.to_yield += len(audio_values) - self.to_yield - self.stride |
|
|
|
def end(self): |
|
if self.token_cache is not None: |
|
audio_values = self.apply_delay_pattern_mask(self.token_cache) |
|
else: |
|
audio_values = np.zeros(self.to_yield) |
|
|
|
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True) |
|
|
|
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False): |
|
self.audio_queue.put(audio, timeout=self.timeout) |
|
if stream_end: |
|
self.audio_queue.put(self.stop_signal, timeout=self.timeout) |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
value = self.audio_queue.get(timeout=self.timeout) |
|
if not isinstance(value, np.ndarray) and value == self.stop_signal: |
|
raise StopIteration() |
|
else: |
|
return value |
|
|
|
|
|
sampling_rate = model.audio_encoder.config.sampling_rate |
|
frame_rate = model.audio_encoder.config.frame_rate |
|
|
|
app = Flask(__name__) |
|
|
|
@app.route('/generate_audio', methods=['POST']) |
|
def generate_audio(): |
|
data = request.json |
|
text_prompt = data.get('text_prompt', '80s pop track with synth and instrumentals') |
|
audio_length_in_s = float(data.get('audio_length_in_s', 10.0)) |
|
play_steps_in_s = float(data.get('play_steps_in_s', 2.0)) |
|
seed = int(data.get('seed', 0)) |
|
|
|
max_new_tokens = int(frame_rate * audio_length_in_s) |
|
play_steps = int(frame_rate * play_steps_in_s) |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
if device != model.device: |
|
model.to(device) |
|
if device == "cuda:0": |
|
model.half() |
|
|
|
inputs = processor( |
|
text=text_prompt, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps) |
|
|
|
generation_kwargs = dict( |
|
**inputs.to(device), |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
set_seed(seed) |
|
generated_audio = [] |
|
for new_audio in streamer: |
|
generated_audio.append(new_audio) |
|
|
|
|
|
final_audio = np.concatenate(generated_audio) |
|
|
|
|
|
buffer = io.BytesIO() |
|
sf.write(buffer, final_audio, sampling_rate, format="wav") |
|
buffer.seek(0) |
|
|
|
return send_file(buffer, mimetype="audio/wav", as_attachment=True, download_name="generated_music.wav") |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=7860) |
|
|