Update modules/hifigan/generator.py
Browse files- modules/hifigan/generator.py +454 -453
 
    	
        modules/hifigan/generator.py
    CHANGED
    
    | 
         @@ -1,453 +1,454 @@ 
     | 
|
| 1 | 
         
            -
            # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
         
     | 
| 2 | 
         
            -
            #
         
     | 
| 3 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            -
            #
         
     | 
| 7 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            -
            #
         
     | 
| 9 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            -
            # limitations under the License.
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            """HIFI-GAN"""
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
            import typing as tp
         
     | 
| 18 | 
         
            -
            import numpy as np
         
     | 
| 19 | 
         
            -
            from scipy.signal import get_window
         
     | 
| 20 | 
         
            -
            import torch
         
     | 
| 21 | 
         
            -
            import torch.nn as nn
         
     | 
| 22 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 23 | 
         
            -
            from torch.nn import Conv1d
         
     | 
| 24 | 
         
            -
            from torch.nn import ConvTranspose1d
         
     | 
| 25 | 
         
            -
            from torch.nn.utils import remove_weight_norm
         
     | 
| 26 | 
         
            -
            from torch.nn.utils import weight_norm
         
     | 
| 27 | 
         
            -
            from torch.distributions.uniform import Uniform
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            from torch import sin
         
     | 
| 30 | 
         
            -
            from torch.nn.parameter import Parameter
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            """hifigan based generator implementation.
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            This code is modified from https://github.com/jik876/hifi-gan
         
     | 
| 36 | 
         
            -
             ,https://github.com/kan-bayashi/ParallelWaveGAN and
         
     | 
| 37 | 
         
            -
             https://github.com/NVIDIA/BigVGAN
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
            """
         
     | 
| 40 | 
         
            -
            class Snake(nn.Module):
         
     | 
| 41 | 
         
            -
                '''
         
     | 
| 42 | 
         
            -
                Implementation of a sine-based periodic activation function
         
     | 
| 43 | 
         
            -
                Shape:
         
     | 
| 44 | 
         
            -
                    - Input: (B, C, T)
         
     | 
| 45 | 
         
            -
                    - Output: (B, C, T), same shape as the input
         
     | 
| 46 | 
         
            -
                Parameters:
         
     | 
| 47 | 
         
            -
                    - alpha - trainable parameter
         
     | 
| 48 | 
         
            -
                References:
         
     | 
| 49 | 
         
            -
                    - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
         
     | 
| 50 | 
         
            -
                    https://arxiv.org/abs/2006.08195
         
     | 
| 51 | 
         
            -
                Examples:
         
     | 
| 52 | 
         
            -
                    >>> a1 = snake(256)
         
     | 
| 53 | 
         
            -
                    >>> x = torch.randn(256)
         
     | 
| 54 | 
         
            -
                    >>> x = a1(x)
         
     | 
| 55 | 
         
            -
                '''
         
     | 
| 56 | 
         
            -
                def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
         
     | 
| 57 | 
         
            -
                    '''
         
     | 
| 58 | 
         
            -
                    Initialization.
         
     | 
| 59 | 
         
            -
                    INPUT:
         
     | 
| 60 | 
         
            -
                        - in_features: shape of the input
         
     | 
| 61 | 
         
            -
                        - alpha: trainable parameter
         
     | 
| 62 | 
         
            -
                        alpha is initialized to 1 by default, higher values = higher-frequency.
         
     | 
| 63 | 
         
            -
                        alpha will be trained along with the rest of your model.
         
     | 
| 64 | 
         
            -
                    '''
         
     | 
| 65 | 
         
            -
                    super(Snake, self).__init__()
         
     | 
| 66 | 
         
            -
                    self.in_features = in_features
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                    # initialize alpha
         
     | 
| 69 | 
         
            -
                    self.alpha_logscale = alpha_logscale
         
     | 
| 70 | 
         
            -
                    if self.alpha_logscale:  # log scale alphas initialized to zeros
         
     | 
| 71 | 
         
            -
                        self.alpha = Parameter(torch.zeros(in_features) * alpha)
         
     | 
| 72 | 
         
            -
                    else:  # linear scale alphas initialized to ones
         
     | 
| 73 | 
         
            -
                        self.alpha = Parameter(torch.ones(in_features) * alpha)
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                    self.alpha.requires_grad = alpha_trainable
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
                    self.no_div_by_zero = 0.000000001
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                def forward(self, x):
         
     | 
| 80 | 
         
            -
                    '''
         
     | 
| 81 | 
         
            -
                    Forward pass of the function.
         
     | 
| 82 | 
         
            -
                    Applies the function to the input elementwise.
         
     | 
| 83 | 
         
            -
                    Snake ∶= x + 1/a * sin^2 (xa)
         
     | 
| 84 | 
         
            -
                    '''
         
     | 
| 85 | 
         
            -
                    alpha = self.alpha.unsqueeze(0).unsqueeze(-1)  # line up with x to [B, C, T]
         
     | 
| 86 | 
         
            -
                    if self.alpha_logscale:
         
     | 
| 87 | 
         
            -
                        alpha = torch.exp(alpha)
         
     | 
| 88 | 
         
            -
                    x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
         
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
                    return x
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
            def get_padding(kernel_size, dilation=1):
         
     | 
| 93 | 
         
            -
                return int((kernel_size * dilation - dilation) / 2)
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
            def init_weights(m, mean=0.0, std=0.01):
         
     | 
| 97 | 
         
            -
                classname = m.__class__.__name__
         
     | 
| 98 | 
         
            -
                if classname.find("Conv") != -1:
         
     | 
| 99 | 
         
            -
                    m.weight.data.normal_(mean, std)
         
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
            class ResBlock(torch.nn.Module):
         
     | 
| 104 | 
         
            -
                """Residual block module in HiFiGAN/BigVGAN."""
         
     | 
| 105 | 
         
            -
                def __init__(
         
     | 
| 106 | 
         
            -
                    self,
         
     | 
| 107 | 
         
            -
                    channels: int = 512,
         
     | 
| 108 | 
         
            -
                    kernel_size: int = 3,
         
     | 
| 109 | 
         
            -
                    dilations: tp.List[int] = [1, 3, 5],
         
     | 
| 110 | 
         
            -
                ):
         
     | 
| 111 | 
         
            -
                    super(ResBlock, self).__init__()
         
     | 
| 112 | 
         
            -
                    self.convs1 = nn.ModuleList()
         
     | 
| 113 | 
         
            -
                    self.convs2 = nn.ModuleList()
         
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
                    for dilation in dilations:
         
     | 
| 116 | 
         
            -
                        self.convs1.append(
         
     | 
| 117 | 
         
            -
                            weight_norm(
         
     | 
| 118 | 
         
            -
                                Conv1d(
         
     | 
| 119 | 
         
            -
                                    channels,
         
     | 
| 120 | 
         
            -
                                    channels,
         
     | 
| 121 | 
         
            -
                                    kernel_size,
         
     | 
| 122 | 
         
            -
                                    1,
         
     | 
| 123 | 
         
            -
                                    dilation=dilation,
         
     | 
| 124 | 
         
            -
                                    padding=get_padding(kernel_size, dilation)
         
     | 
| 125 | 
         
            -
                                )
         
     | 
| 126 | 
         
            -
                            )
         
     | 
| 127 | 
         
            -
                        )
         
     | 
| 128 | 
         
            -
                        self.convs2.append(
         
     | 
| 129 | 
         
            -
                            weight_norm(
         
     | 
| 130 | 
         
            -
                                Conv1d(
         
     | 
| 131 | 
         
            -
                                    channels,
         
     | 
| 132 | 
         
            -
                                    channels,
         
     | 
| 133 | 
         
            -
                                    kernel_size,
         
     | 
| 134 | 
         
            -
                                    1,
         
     | 
| 135 | 
         
            -
                                    dilation=1,
         
     | 
| 136 | 
         
            -
                                    padding=get_padding(kernel_size, 1)
         
     | 
| 137 | 
         
            -
                                )
         
     | 
| 138 | 
         
            -
                            )
         
     | 
| 139 | 
         
            -
                        )
         
     | 
| 140 | 
         
            -
                    self.convs1.apply(init_weights)
         
     | 
| 141 | 
         
            -
                    self.convs2.apply(init_weights)
         
     | 
| 142 | 
         
            -
                    self.activations1 = nn.ModuleList([
         
     | 
| 143 | 
         
            -
                        Snake(channels, alpha_logscale=False)
         
     | 
| 144 | 
         
            -
                        for _ in range(len(self.convs1))
         
     | 
| 145 | 
         
            -
                    ])
         
     | 
| 146 | 
         
            -
                    self.activations2 = nn.ModuleList([
         
     | 
| 147 | 
         
            -
                        Snake(channels, alpha_logscale=False)
         
     | 
| 148 | 
         
            -
                        for _ in range(len(self.convs2))
         
     | 
| 149 | 
         
            -
                    ])
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 152 | 
         
            -
                    for idx in range(len(self.convs1)):
         
     | 
| 153 | 
         
            -
                        xt = self.activations1[idx](x)
         
     | 
| 154 | 
         
            -
                        xt = self.convs1[idx](xt)
         
     | 
| 155 | 
         
            -
                        xt = self.activations2[idx](xt)
         
     | 
| 156 | 
         
            -
                        xt = self.convs2[idx](xt)
         
     | 
| 157 | 
         
            -
                        x = xt + x
         
     | 
| 158 | 
         
            -
                    return x
         
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
                def remove_weight_norm(self):
         
     | 
| 161 | 
         
            -
                    for idx in range(len(self.convs1)):
         
     | 
| 162 | 
         
            -
                        remove_weight_norm(self.convs1[idx])
         
     | 
| 163 | 
         
            -
                        remove_weight_norm(self.convs2[idx])
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
            class SineGen(torch.nn.Module):
         
     | 
| 166 | 
         
            -
                """ Definition of sine generator
         
     | 
| 167 | 
         
            -
                SineGen(samp_rate, harmonic_num = 0,
         
     | 
| 168 | 
         
            -
                        sine_amp = 0.1, noise_std = 0.003,
         
     | 
| 169 | 
         
            -
                        voiced_threshold = 0,
         
     | 
| 170 | 
         
            -
                        flag_for_pulse=False)
         
     | 
| 171 | 
         
            -
                samp_rate: sampling rate in Hz
         
     | 
| 172 | 
         
            -
                harmonic_num: number of harmonic overtones (default 0)
         
     | 
| 173 | 
         
            -
                sine_amp: amplitude of sine-wavefrom (default 0.1)
         
     | 
| 174 | 
         
            -
                noise_std: std of Gaussian noise (default 0.003)
         
     | 
| 175 | 
         
            -
                voiced_thoreshold: F0 threshold for U/V classification (default 0)
         
     | 
| 176 | 
         
            -
                flag_for_pulse: this SinGen is used inside PulseGen (default False)
         
     | 
| 177 | 
         
            -
                Note: when flag_for_pulse is True, the first time step of a voiced
         
     | 
| 178 | 
         
            -
                    segment is always sin(np.pi) or cos(0)
         
     | 
| 179 | 
         
            -
                """
         
     | 
| 180 | 
         
            -
             
     | 
| 181 | 
         
            -
                def __init__(self, samp_rate, harmonic_num=0,
         
     | 
| 182 | 
         
            -
                             sine_amp=0.1, noise_std=0.003,
         
     | 
| 183 | 
         
            -
                             voiced_threshold=0):
         
     | 
| 184 | 
         
            -
                    super(SineGen, self).__init__()
         
     | 
| 185 | 
         
            -
                    self.sine_amp = sine_amp
         
     | 
| 186 | 
         
            -
                    self.noise_std = noise_std
         
     | 
| 187 | 
         
            -
                    self.harmonic_num = harmonic_num
         
     | 
| 188 | 
         
            -
                    self.sampling_rate = samp_rate
         
     | 
| 189 | 
         
            -
                    self.voiced_threshold = voiced_threshold
         
     | 
| 190 | 
         
            -
             
     | 
| 191 | 
         
            -
                def _f02uv(self, f0):
         
     | 
| 192 | 
         
            -
                    # generate uv signal
         
     | 
| 193 | 
         
            -
                    uv = (f0 > self.voiced_threshold).type(torch.float32)
         
     | 
| 194 | 
         
            -
                    return uv
         
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
                @torch.no_grad()
         
     | 
| 197 | 
         
            -
                def forward(self, f0):
         
     | 
| 198 | 
         
            -
                    """
         
     | 
| 199 | 
         
            -
                    :param f0: [B, 1, sample_len], Hz
         
     | 
| 200 | 
         
            -
                    :return: [B, 1, sample_len]
         
     | 
| 201 | 
         
            -
                    """
         
     | 
| 202 | 
         
            -
             
     | 
| 203 | 
         
            -
                    F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
         
     | 
| 204 | 
         
            -
                    for i in range(self.harmonic_num + 1):
         
     | 
| 205 | 
         
            -
                        F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
         
     | 
| 206 | 
         
            -
             
     | 
| 207 | 
         
            -
                    theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
         
     | 
| 208 | 
         
            -
                    u_dist = Uniform(low=-np.pi, high=np.pi)
         
     | 
| 209 | 
         
            -
                    phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
         
     | 
| 210 | 
         
            -
                    phase_vec[:, 0, :] = 0
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                    # generate sine waveforms
         
     | 
| 213 | 
         
            -
                    sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
         
     | 
| 214 | 
         
            -
             
     | 
| 215 | 
         
            -
                    # generate uv signal
         
     | 
| 216 | 
         
            -
                    uv = self._f02uv(f0)
         
     | 
| 217 | 
         
            -
             
     | 
| 218 | 
         
            -
                    # noise: for unvoiced should be similar to sine_amp
         
     | 
| 219 | 
         
            -
                    #        std = self.sine_amp/3 -> max value ~ self.sine_amp
         
     | 
| 220 | 
         
            -
                    # .       for voiced regions is self.noise_std
         
     | 
| 221 | 
         
            -
                    noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
         
     | 
| 222 | 
         
            -
                    noise = noise_amp * torch.randn_like(sine_waves)
         
     | 
| 223 | 
         
            -
             
     | 
| 224 | 
         
            -
                    # first: set the unvoiced part to 0 by uv
         
     | 
| 225 | 
         
            -
                    # then: additive noise
         
     | 
| 226 | 
         
            -
                    sine_waves = sine_waves * uv + noise
         
     | 
| 227 | 
         
            -
                    return sine_waves, uv, noise
         
     | 
| 228 | 
         
            -
             
     | 
| 229 | 
         
            -
             
     | 
| 230 | 
         
            -
            class SourceModuleHnNSF(torch.nn.Module):
         
     | 
| 231 | 
         
            -
                """ SourceModule for hn-nsf
         
     | 
| 232 | 
         
            -
                SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
         
     | 
| 233 | 
         
            -
                             add_noise_std=0.003, voiced_threshod=0)
         
     | 
| 234 | 
         
            -
                sampling_rate: sampling_rate in Hz
         
     | 
| 235 | 
         
            -
                harmonic_num: number of harmonic above F0 (default: 0)
         
     | 
| 236 | 
         
            -
                sine_amp: amplitude of sine source signal (default: 0.1)
         
     | 
| 237 | 
         
            -
                add_noise_std: std of additive Gaussian noise (default: 0.003)
         
     | 
| 238 | 
         
            -
                    note that amplitude of noise in unvoiced is decided
         
     | 
| 239 | 
         
            -
                    by sine_amp
         
     | 
| 240 | 
         
            -
                voiced_threshold: threhold to set U/V given F0 (default: 0)
         
     | 
| 241 | 
         
            -
                Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
         
     | 
| 242 | 
         
            -
                F0_sampled (batchsize, length, 1)
         
     | 
| 243 | 
         
            -
                Sine_source (batchsize, length, 1)
         
     | 
| 244 | 
         
            -
                noise_source (batchsize, length 1)
         
     | 
| 245 | 
         
            -
                uv (batchsize, length, 1)
         
     | 
| 246 | 
         
            -
                """
         
     | 
| 247 | 
         
            -
             
     | 
| 248 | 
         
            -
                def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
         
     | 
| 249 | 
         
            -
                             add_noise_std=0.003, voiced_threshod=0):
         
     | 
| 250 | 
         
            -
                    super(SourceModuleHnNSF, self).__init__()
         
     | 
| 251 | 
         
            -
             
     | 
| 252 | 
         
            -
                    self.sine_amp = sine_amp
         
     | 
| 253 | 
         
            -
                    self.noise_std = add_noise_std
         
     | 
| 254 | 
         
            -
             
     | 
| 255 | 
         
            -
                    # to produce sine waveforms
         
     | 
| 256 | 
         
            -
                    self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
         
     | 
| 257 | 
         
            -
                                             sine_amp, add_noise_std, voiced_threshod)
         
     | 
| 258 | 
         
            -
             
     | 
| 259 | 
         
            -
                    # to merge source harmonics into a single excitation
         
     | 
| 260 | 
         
            -
                    self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
         
     | 
| 261 | 
         
            -
                    self.l_tanh = torch.nn.Tanh()
         
     | 
| 262 | 
         
            -
             
     | 
| 263 | 
         
            -
                def forward(self, x):
         
     | 
| 264 | 
         
            -
                    """
         
     | 
| 265 | 
         
            -
                    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
         
     | 
| 266 | 
         
            -
                    F0_sampled (batchsize, length, 1)
         
     | 
| 267 | 
         
            -
                    Sine_source (batchsize, length, 1)
         
     | 
| 268 | 
         
            -
                    noise_source (batchsize, length 1)
         
     | 
| 269 | 
         
            -
                    """
         
     | 
| 270 | 
         
            -
                    # source for harmonic branch
         
     | 
| 271 | 
         
            -
                    with torch.no_grad():
         
     | 
| 272 | 
         
            -
                        sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
         
     | 
| 273 | 
         
            -
                        sine_wavs = sine_wavs.transpose(1, 2)
         
     | 
| 274 | 
         
            -
                        uv = uv.transpose(1, 2)
         
     | 
| 275 | 
         
            -
                    sine_merge = self.l_tanh(self.l_linear(sine_wavs))
         
     | 
| 276 | 
         
            -
             
     | 
| 277 | 
         
            -
                    # source for noise branch, in the same shape as uv
         
     | 
| 278 | 
         
            -
                    noise = torch.randn_like(uv) * self.sine_amp / 3
         
     | 
| 279 | 
         
            -
                    return sine_merge, noise, uv
         
     | 
| 280 | 
         
            -
             
     | 
| 281 | 
         
            -
             
     | 
| 282 | 
         
            -
            class HiFTGenerator(nn.Module):
         
     | 
| 283 | 
         
            -
                """
         
     | 
| 284 | 
         
            -
                HiFTNet Generator: Neural Source Filter + ISTFTNet
         
     | 
| 285 | 
         
            -
                https://arxiv.org/abs/2309.09493
         
     | 
| 286 | 
         
            -
                """
         
     | 
| 287 | 
         
            -
                def __init__(
         
     | 
| 288 | 
         
            -
                        self,
         
     | 
| 289 | 
         
            -
                        in_channels: int = 80,
         
     | 
| 290 | 
         
            -
                        base_channels: int = 512,
         
     | 
| 291 | 
         
            -
                        nb_harmonics: int = 8,
         
     | 
| 292 | 
         
            -
                        sampling_rate: int = 22050,
         
     | 
| 293 | 
         
            -
                        nsf_alpha: float = 0.1,
         
     | 
| 294 | 
         
            -
                        nsf_sigma: float = 0.003,
         
     | 
| 295 | 
         
            -
                        nsf_voiced_threshold: float = 10,
         
     | 
| 296 | 
         
            -
                        upsample_rates: tp.List[int] = [8, 8],
         
     | 
| 297 | 
         
            -
                        upsample_kernel_sizes: tp.List[int] = [16, 16],
         
     | 
| 298 | 
         
            -
                        istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
         
     | 
| 299 | 
         
            -
                        resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
         
     | 
| 300 | 
         
            -
                        resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
         
     | 
| 301 | 
         
            -
                        source_resblock_kernel_sizes: tp.List[int] = [7, 11],
         
     | 
| 302 | 
         
            -
                        source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
         
     | 
| 303 | 
         
            -
                        lrelu_slope: float = 0.1,
         
     | 
| 304 | 
         
            -
                        audio_limit: float = 0.99,
         
     | 
| 305 | 
         
            -
                        f0_predictor: torch.nn.Module = None,
         
     | 
| 306 | 
         
            -
                ):
         
     | 
| 307 | 
         
            -
                    super(HiFTGenerator, self).__init__()
         
     | 
| 308 | 
         
            -
             
     | 
| 309 | 
         
            -
                    self.out_channels = 1
         
     | 
| 310 | 
         
            -
                    self.nb_harmonics = nb_harmonics
         
     | 
| 311 | 
         
            -
                    self.sampling_rate = sampling_rate
         
     | 
| 312 | 
         
            -
                    self.istft_params = istft_params
         
     | 
| 313 | 
         
            -
                    self.lrelu_slope = lrelu_slope
         
     | 
| 314 | 
         
            -
                    self.audio_limit = audio_limit
         
     | 
| 315 | 
         
            -
             
     | 
| 316 | 
         
            -
                    self.num_kernels = len(resblock_kernel_sizes)
         
     | 
| 317 | 
         
            -
                    self.num_upsamples = len(upsample_rates)
         
     | 
| 318 | 
         
            -
                    self.m_source = SourceModuleHnNSF(
         
     | 
| 319 | 
         
            -
                        sampling_rate=sampling_rate,
         
     | 
| 320 | 
         
            -
                        upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
         
     | 
| 321 | 
         
            -
                        harmonic_num=nb_harmonics,
         
     | 
| 322 | 
         
            -
                        sine_amp=nsf_alpha,
         
     | 
| 323 | 
         
            -
                        add_noise_std=nsf_sigma,
         
     | 
| 324 | 
         
            -
                        voiced_threshod=nsf_voiced_threshold)
         
     | 
| 325 | 
         
            -
                    self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
         
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
                    self.conv_pre = weight_norm(
         
     | 
| 328 | 
         
            -
                        Conv1d(in_channels, base_channels, 7, 1, padding=3)
         
     | 
| 329 | 
         
            -
                    )
         
     | 
| 330 | 
         
            -
             
     | 
| 331 | 
         
            -
                    # Up
         
     | 
| 332 | 
         
            -
                    self.ups = nn.ModuleList()
         
     | 
| 333 | 
         
            -
                    for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
         
     | 
| 334 | 
         
            -
                        self.ups.append(
         
     | 
| 335 | 
         
            -
                            weight_norm(
         
     | 
| 336 | 
         
            -
                                ConvTranspose1d(
         
     | 
| 337 | 
         
            -
                                    base_channels // (2**i),
         
     | 
| 338 | 
         
            -
                                    base_channels // (2**(i + 1)),
         
     | 
| 339 | 
         
            -
                                    k,
         
     | 
| 340 | 
         
            -
                                    u,
         
     | 
| 341 | 
         
            -
                                    padding=(k - u) // 2,
         
     | 
| 342 | 
         
            -
                                )
         
     | 
| 343 | 
         
            -
                            )
         
     | 
| 344 | 
         
            -
                        )
         
     | 
| 345 | 
         
            -
             
     | 
| 346 | 
         
            -
                    # Down
         
     | 
| 347 | 
         
            -
                    self.source_downs = nn.ModuleList()
         
     | 
| 348 | 
         
            -
                    self.source_resblocks = nn.ModuleList()
         
     | 
| 349 | 
         
            -
                    downsample_rates = [1] + upsample_rates[::-1][:-1]
         
     | 
| 350 | 
         
            -
                    downsample_cum_rates = np.cumprod(downsample_rates)
         
     | 
| 351 | 
         
            -
                    for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
         
     | 
| 352 | 
         
            -
                                                      source_resblock_dilation_sizes)):
         
     | 
| 353 | 
         
            -
                        if u == 1:
         
     | 
| 354 | 
         
            -
                            self.source_downs.append(
         
     | 
| 355 | 
         
            -
                                Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
         
     | 
| 356 | 
         
            -
                            )
         
     | 
| 357 | 
         
            -
                        else:
         
     | 
| 358 | 
         
            -
                            self.source_downs.append(
         
     | 
| 359 | 
         
            -
                                Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
         
     | 
| 360 | 
         
            -
                            )
         
     | 
| 361 | 
         
            -
             
     | 
| 362 | 
         
            -
                        self.source_resblocks.append(
         
     | 
| 363 | 
         
            -
                            ResBlock(base_channels // (2 ** (i + 1)), k, d)
         
     | 
| 364 | 
         
            -
                        )
         
     | 
| 365 | 
         
            -
             
     | 
| 366 | 
         
            -
                    self.resblocks = nn.ModuleList()
         
     | 
| 367 | 
         
            -
                    for i in range(len(self.ups)):
         
     | 
| 368 | 
         
            -
                        ch = base_channels // (2**(i + 1))
         
     | 
| 369 | 
         
            -
                        for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
         
     | 
| 370 | 
         
            -
                            self.resblocks.append(ResBlock(ch, k, d))
         
     | 
| 371 | 
         
            -
             
     | 
| 372 | 
         
            -
                    self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
         
     | 
| 373 | 
         
            -
                    self.ups.apply(init_weights)
         
     | 
| 374 | 
         
            -
                    self.conv_post.apply(init_weights)
         
     | 
| 375 | 
         
            -
                    self.reflection_pad = nn.ReflectionPad1d((1, 0))
         
     | 
| 376 | 
         
            -
                    self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
         
     | 
| 377 | 
         
            -
                    self.f0_predictor = f0_predictor
         
     | 
| 378 | 
         
            -
             
     | 
| 379 | 
         
            -
                def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
         
     | 
| 380 | 
         
            -
                    f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2)  # bs,n,t
         
     | 
| 381 | 
         
            -
             
     | 
| 382 | 
         
            -
                    har_source, _, _ = self.m_source(f0)
         
     | 
| 383 | 
         
            -
                    return har_source.transpose(1, 2)
         
     | 
| 384 | 
         
            -
             
     | 
| 385 | 
         
            -
                def _stft(self, x):
         
     | 
| 386 | 
         
            -
                    spec = torch.stft(
         
     | 
| 387 | 
         
            -
                        x,
         
     | 
| 388 | 
         
            -
                        self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
         
     | 
| 389 | 
         
            -
                        return_complex=True)
         
     | 
| 390 | 
         
            -
                    spec = torch.view_as_real(spec)  # [B, F, TT, 2]
         
     | 
| 391 | 
         
            -
                    return spec[..., 0], spec[..., 1]
         
     | 
| 392 | 
         
            -
             
     | 
| 393 | 
         
            -
                def _istft(self, magnitude, phase):
         
     | 
| 394 | 
         
            -
                    magnitude = torch.clip(magnitude, max=1e2)
         
     | 
| 395 | 
         
            -
                    real = magnitude * torch.cos(phase)
         
     | 
| 396 | 
         
            -
                    img = magnitude * torch.sin(phase)
         
     | 
| 397 | 
         
            -
                    inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
         
     | 
| 398 | 
         
            -
                    return inverse_transform
         
     | 
| 399 | 
         
            -
             
     | 
| 400 | 
         
            -
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 401 | 
         
            -
                    f0  
     | 
| 402 | 
         
            -
             
     | 
| 403 | 
         
            -
             
     | 
| 404 | 
         
            -
             
     | 
| 405 | 
         
            -
                     
     | 
| 406 | 
         
            -
             
     | 
| 407 | 
         
            -
             
     | 
| 408 | 
         
            -
                     
     | 
| 409 | 
         
            -
             
     | 
| 410 | 
         
            -
                        x =  
     | 
| 411 | 
         
            -
             
     | 
| 412 | 
         
            -
             
     | 
| 413 | 
         
            -
             
     | 
| 414 | 
         
            -
             
     | 
| 415 | 
         
            -
             
     | 
| 416 | 
         
            -
                         
     | 
| 417 | 
         
            -
                        si = self. 
     | 
| 418 | 
         
            -
                         
     | 
| 419 | 
         
            -
             
     | 
| 420 | 
         
            -
             
     | 
| 421 | 
         
            -
                         
     | 
| 422 | 
         
            -
             
     | 
| 423 | 
         
            -
             
     | 
| 424 | 
         
            -
             
     | 
| 425 | 
         
            -
             
     | 
| 426 | 
         
            -
             
     | 
| 427 | 
         
            -
             
     | 
| 428 | 
         
            -
             
     | 
| 429 | 
         
            -
                    x =  
     | 
| 430 | 
         
            -
                     
     | 
| 431 | 
         
            -
                     
     | 
| 432 | 
         
            -
             
     | 
| 433 | 
         
            -
             
     | 
| 434 | 
         
            -
                    x =  
     | 
| 435 | 
         
            -
                     
     | 
| 436 | 
         
            -
             
     | 
| 437 | 
         
            -
             
     | 
| 438 | 
         
            -
             
     | 
| 439 | 
         
            -
                     
     | 
| 440 | 
         
            -
             
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
             
     | 
| 443 | 
         
            -
             
     | 
| 444 | 
         
            -
                    remove_weight_norm(self. 
     | 
| 445 | 
         
            -
                    self. 
     | 
| 446 | 
         
            -
                     
     | 
| 447 | 
         
            -
             
     | 
| 448 | 
         
            -
             
     | 
| 449 | 
         
            -
             
     | 
| 450 | 
         
            -
             
     | 
| 451 | 
         
            -
             
     | 
| 452 | 
         
            -
                 
     | 
| 453 | 
         
            -
             
     | 
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            """HIFI-GAN"""
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            import typing as tp
         
     | 
| 18 | 
         
            +
            import numpy as np
         
     | 
| 19 | 
         
            +
            from scipy.signal import get_window
         
     | 
| 20 | 
         
            +
            import torch
         
     | 
| 21 | 
         
            +
            import torch.nn as nn
         
     | 
| 22 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 23 | 
         
            +
            from torch.nn import Conv1d
         
     | 
| 24 | 
         
            +
            from torch.nn import ConvTranspose1d
         
     | 
| 25 | 
         
            +
            from torch.nn.utils import remove_weight_norm
         
     | 
| 26 | 
         
            +
            from torch.nn.utils import weight_norm
         
     | 
| 27 | 
         
            +
            from torch.distributions.uniform import Uniform
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            from torch import sin
         
     | 
| 30 | 
         
            +
            from torch.nn.parameter import Parameter
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            """hifigan based generator implementation.
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            This code is modified from https://github.com/jik876/hifi-gan
         
     | 
| 36 | 
         
            +
             ,https://github.com/kan-bayashi/ParallelWaveGAN and
         
     | 
| 37 | 
         
            +
             https://github.com/NVIDIA/BigVGAN
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            """
         
     | 
| 40 | 
         
            +
            class Snake(nn.Module):
         
     | 
| 41 | 
         
            +
                '''
         
     | 
| 42 | 
         
            +
                Implementation of a sine-based periodic activation function
         
     | 
| 43 | 
         
            +
                Shape:
         
     | 
| 44 | 
         
            +
                    - Input: (B, C, T)
         
     | 
| 45 | 
         
            +
                    - Output: (B, C, T), same shape as the input
         
     | 
| 46 | 
         
            +
                Parameters:
         
     | 
| 47 | 
         
            +
                    - alpha - trainable parameter
         
     | 
| 48 | 
         
            +
                References:
         
     | 
| 49 | 
         
            +
                    - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
         
     | 
| 50 | 
         
            +
                    https://arxiv.org/abs/2006.08195
         
     | 
| 51 | 
         
            +
                Examples:
         
     | 
| 52 | 
         
            +
                    >>> a1 = snake(256)
         
     | 
| 53 | 
         
            +
                    >>> x = torch.randn(256)
         
     | 
| 54 | 
         
            +
                    >>> x = a1(x)
         
     | 
| 55 | 
         
            +
                '''
         
     | 
| 56 | 
         
            +
                def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
         
     | 
| 57 | 
         
            +
                    '''
         
     | 
| 58 | 
         
            +
                    Initialization.
         
     | 
| 59 | 
         
            +
                    INPUT:
         
     | 
| 60 | 
         
            +
                        - in_features: shape of the input
         
     | 
| 61 | 
         
            +
                        - alpha: trainable parameter
         
     | 
| 62 | 
         
            +
                        alpha is initialized to 1 by default, higher values = higher-frequency.
         
     | 
| 63 | 
         
            +
                        alpha will be trained along with the rest of your model.
         
     | 
| 64 | 
         
            +
                    '''
         
     | 
| 65 | 
         
            +
                    super(Snake, self).__init__()
         
     | 
| 66 | 
         
            +
                    self.in_features = in_features
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    # initialize alpha
         
     | 
| 69 | 
         
            +
                    self.alpha_logscale = alpha_logscale
         
     | 
| 70 | 
         
            +
                    if self.alpha_logscale:  # log scale alphas initialized to zeros
         
     | 
| 71 | 
         
            +
                        self.alpha = Parameter(torch.zeros(in_features) * alpha)
         
     | 
| 72 | 
         
            +
                    else:  # linear scale alphas initialized to ones
         
     | 
| 73 | 
         
            +
                        self.alpha = Parameter(torch.ones(in_features) * alpha)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    self.alpha.requires_grad = alpha_trainable
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    self.no_div_by_zero = 0.000000001
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                def forward(self, x):
         
     | 
| 80 | 
         
            +
                    '''
         
     | 
| 81 | 
         
            +
                    Forward pass of the function.
         
     | 
| 82 | 
         
            +
                    Applies the function to the input elementwise.
         
     | 
| 83 | 
         
            +
                    Snake ∶= x + 1/a * sin^2 (xa)
         
     | 
| 84 | 
         
            +
                    '''
         
     | 
| 85 | 
         
            +
                    alpha = self.alpha.unsqueeze(0).unsqueeze(-1)  # line up with x to [B, C, T]
         
     | 
| 86 | 
         
            +
                    if self.alpha_logscale:
         
     | 
| 87 | 
         
            +
                        alpha = torch.exp(alpha)
         
     | 
| 88 | 
         
            +
                    x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                    return x
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            def get_padding(kernel_size, dilation=1):
         
     | 
| 93 | 
         
            +
                return int((kernel_size * dilation - dilation) / 2)
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
            def init_weights(m, mean=0.0, std=0.01):
         
     | 
| 97 | 
         
            +
                classname = m.__class__.__name__
         
     | 
| 98 | 
         
            +
                if classname.find("Conv") != -1:
         
     | 
| 99 | 
         
            +
                    m.weight.data.normal_(mean, std)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            class ResBlock(torch.nn.Module):
         
     | 
| 104 | 
         
            +
                """Residual block module in HiFiGAN/BigVGAN."""
         
     | 
| 105 | 
         
            +
                def __init__(
         
     | 
| 106 | 
         
            +
                    self,
         
     | 
| 107 | 
         
            +
                    channels: int = 512,
         
     | 
| 108 | 
         
            +
                    kernel_size: int = 3,
         
     | 
| 109 | 
         
            +
                    dilations: tp.List[int] = [1, 3, 5],
         
     | 
| 110 | 
         
            +
                ):
         
     | 
| 111 | 
         
            +
                    super(ResBlock, self).__init__()
         
     | 
| 112 | 
         
            +
                    self.convs1 = nn.ModuleList()
         
     | 
| 113 | 
         
            +
                    self.convs2 = nn.ModuleList()
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    for dilation in dilations:
         
     | 
| 116 | 
         
            +
                        self.convs1.append(
         
     | 
| 117 | 
         
            +
                            weight_norm(
         
     | 
| 118 | 
         
            +
                                Conv1d(
         
     | 
| 119 | 
         
            +
                                    channels,
         
     | 
| 120 | 
         
            +
                                    channels,
         
     | 
| 121 | 
         
            +
                                    kernel_size,
         
     | 
| 122 | 
         
            +
                                    1,
         
     | 
| 123 | 
         
            +
                                    dilation=dilation,
         
     | 
| 124 | 
         
            +
                                    padding=get_padding(kernel_size, dilation)
         
     | 
| 125 | 
         
            +
                                )
         
     | 
| 126 | 
         
            +
                            )
         
     | 
| 127 | 
         
            +
                        )
         
     | 
| 128 | 
         
            +
                        self.convs2.append(
         
     | 
| 129 | 
         
            +
                            weight_norm(
         
     | 
| 130 | 
         
            +
                                Conv1d(
         
     | 
| 131 | 
         
            +
                                    channels,
         
     | 
| 132 | 
         
            +
                                    channels,
         
     | 
| 133 | 
         
            +
                                    kernel_size,
         
     | 
| 134 | 
         
            +
                                    1,
         
     | 
| 135 | 
         
            +
                                    dilation=1,
         
     | 
| 136 | 
         
            +
                                    padding=get_padding(kernel_size, 1)
         
     | 
| 137 | 
         
            +
                                )
         
     | 
| 138 | 
         
            +
                            )
         
     | 
| 139 | 
         
            +
                        )
         
     | 
| 140 | 
         
            +
                    self.convs1.apply(init_weights)
         
     | 
| 141 | 
         
            +
                    self.convs2.apply(init_weights)
         
     | 
| 142 | 
         
            +
                    self.activations1 = nn.ModuleList([
         
     | 
| 143 | 
         
            +
                        Snake(channels, alpha_logscale=False)
         
     | 
| 144 | 
         
            +
                        for _ in range(len(self.convs1))
         
     | 
| 145 | 
         
            +
                    ])
         
     | 
| 146 | 
         
            +
                    self.activations2 = nn.ModuleList([
         
     | 
| 147 | 
         
            +
                        Snake(channels, alpha_logscale=False)
         
     | 
| 148 | 
         
            +
                        for _ in range(len(self.convs2))
         
     | 
| 149 | 
         
            +
                    ])
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 152 | 
         
            +
                    for idx in range(len(self.convs1)):
         
     | 
| 153 | 
         
            +
                        xt = self.activations1[idx](x)
         
     | 
| 154 | 
         
            +
                        xt = self.convs1[idx](xt)
         
     | 
| 155 | 
         
            +
                        xt = self.activations2[idx](xt)
         
     | 
| 156 | 
         
            +
                        xt = self.convs2[idx](xt)
         
     | 
| 157 | 
         
            +
                        x = xt + x
         
     | 
| 158 | 
         
            +
                    return x
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                def remove_weight_norm(self):
         
     | 
| 161 | 
         
            +
                    for idx in range(len(self.convs1)):
         
     | 
| 162 | 
         
            +
                        remove_weight_norm(self.convs1[idx])
         
     | 
| 163 | 
         
            +
                        remove_weight_norm(self.convs2[idx])
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            class SineGen(torch.nn.Module):
         
     | 
| 166 | 
         
            +
                """ Definition of sine generator
         
     | 
| 167 | 
         
            +
                SineGen(samp_rate, harmonic_num = 0,
         
     | 
| 168 | 
         
            +
                        sine_amp = 0.1, noise_std = 0.003,
         
     | 
| 169 | 
         
            +
                        voiced_threshold = 0,
         
     | 
| 170 | 
         
            +
                        flag_for_pulse=False)
         
     | 
| 171 | 
         
            +
                samp_rate: sampling rate in Hz
         
     | 
| 172 | 
         
            +
                harmonic_num: number of harmonic overtones (default 0)
         
     | 
| 173 | 
         
            +
                sine_amp: amplitude of sine-wavefrom (default 0.1)
         
     | 
| 174 | 
         
            +
                noise_std: std of Gaussian noise (default 0.003)
         
     | 
| 175 | 
         
            +
                voiced_thoreshold: F0 threshold for U/V classification (default 0)
         
     | 
| 176 | 
         
            +
                flag_for_pulse: this SinGen is used inside PulseGen (default False)
         
     | 
| 177 | 
         
            +
                Note: when flag_for_pulse is True, the first time step of a voiced
         
     | 
| 178 | 
         
            +
                    segment is always sin(np.pi) or cos(0)
         
     | 
| 179 | 
         
            +
                """
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                def __init__(self, samp_rate, harmonic_num=0,
         
     | 
| 182 | 
         
            +
                             sine_amp=0.1, noise_std=0.003,
         
     | 
| 183 | 
         
            +
                             voiced_threshold=0):
         
     | 
| 184 | 
         
            +
                    super(SineGen, self).__init__()
         
     | 
| 185 | 
         
            +
                    self.sine_amp = sine_amp
         
     | 
| 186 | 
         
            +
                    self.noise_std = noise_std
         
     | 
| 187 | 
         
            +
                    self.harmonic_num = harmonic_num
         
     | 
| 188 | 
         
            +
                    self.sampling_rate = samp_rate
         
     | 
| 189 | 
         
            +
                    self.voiced_threshold = voiced_threshold
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                def _f02uv(self, f0):
         
     | 
| 192 | 
         
            +
                    # generate uv signal
         
     | 
| 193 | 
         
            +
                    uv = (f0 > self.voiced_threshold).type(torch.float32)
         
     | 
| 194 | 
         
            +
                    return uv
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                @torch.no_grad()
         
     | 
| 197 | 
         
            +
                def forward(self, f0):
         
     | 
| 198 | 
         
            +
                    """
         
     | 
| 199 | 
         
            +
                    :param f0: [B, 1, sample_len], Hz
         
     | 
| 200 | 
         
            +
                    :return: [B, 1, sample_len]
         
     | 
| 201 | 
         
            +
                    """
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
         
     | 
| 204 | 
         
            +
                    for i in range(self.harmonic_num + 1):
         
     | 
| 205 | 
         
            +
                        F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
         
     | 
| 208 | 
         
            +
                    u_dist = Uniform(low=-np.pi, high=np.pi)
         
     | 
| 209 | 
         
            +
                    phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
         
     | 
| 210 | 
         
            +
                    phase_vec[:, 0, :] = 0
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    # generate sine waveforms
         
     | 
| 213 | 
         
            +
                    sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                    # generate uv signal
         
     | 
| 216 | 
         
            +
                    uv = self._f02uv(f0)
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    # noise: for unvoiced should be similar to sine_amp
         
     | 
| 219 | 
         
            +
                    #        std = self.sine_amp/3 -> max value ~ self.sine_amp
         
     | 
| 220 | 
         
            +
                    # .       for voiced regions is self.noise_std
         
     | 
| 221 | 
         
            +
                    noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
         
     | 
| 222 | 
         
            +
                    noise = noise_amp * torch.randn_like(sine_waves)
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                    # first: set the unvoiced part to 0 by uv
         
     | 
| 225 | 
         
            +
                    # then: additive noise
         
     | 
| 226 | 
         
            +
                    sine_waves = sine_waves * uv + noise
         
     | 
| 227 | 
         
            +
                    return sine_waves, uv, noise
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
            class SourceModuleHnNSF(torch.nn.Module):
         
     | 
| 231 | 
         
            +
                """ SourceModule for hn-nsf
         
     | 
| 232 | 
         
            +
                SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
         
     | 
| 233 | 
         
            +
                             add_noise_std=0.003, voiced_threshod=0)
         
     | 
| 234 | 
         
            +
                sampling_rate: sampling_rate in Hz
         
     | 
| 235 | 
         
            +
                harmonic_num: number of harmonic above F0 (default: 0)
         
     | 
| 236 | 
         
            +
                sine_amp: amplitude of sine source signal (default: 0.1)
         
     | 
| 237 | 
         
            +
                add_noise_std: std of additive Gaussian noise (default: 0.003)
         
     | 
| 238 | 
         
            +
                    note that amplitude of noise in unvoiced is decided
         
     | 
| 239 | 
         
            +
                    by sine_amp
         
     | 
| 240 | 
         
            +
                voiced_threshold: threhold to set U/V given F0 (default: 0)
         
     | 
| 241 | 
         
            +
                Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
         
     | 
| 242 | 
         
            +
                F0_sampled (batchsize, length, 1)
         
     | 
| 243 | 
         
            +
                Sine_source (batchsize, length, 1)
         
     | 
| 244 | 
         
            +
                noise_source (batchsize, length 1)
         
     | 
| 245 | 
         
            +
                uv (batchsize, length, 1)
         
     | 
| 246 | 
         
            +
                """
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
         
     | 
| 249 | 
         
            +
                             add_noise_std=0.003, voiced_threshod=0):
         
     | 
| 250 | 
         
            +
                    super(SourceModuleHnNSF, self).__init__()
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                    self.sine_amp = sine_amp
         
     | 
| 253 | 
         
            +
                    self.noise_std = add_noise_std
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                    # to produce sine waveforms
         
     | 
| 256 | 
         
            +
                    self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
         
     | 
| 257 | 
         
            +
                                             sine_amp, add_noise_std, voiced_threshod)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    # to merge source harmonics into a single excitation
         
     | 
| 260 | 
         
            +
                    self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
         
     | 
| 261 | 
         
            +
                    self.l_tanh = torch.nn.Tanh()
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                def forward(self, x):
         
     | 
| 264 | 
         
            +
                    """
         
     | 
| 265 | 
         
            +
                    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
         
     | 
| 266 | 
         
            +
                    F0_sampled (batchsize, length, 1)
         
     | 
| 267 | 
         
            +
                    Sine_source (batchsize, length, 1)
         
     | 
| 268 | 
         
            +
                    noise_source (batchsize, length 1)
         
     | 
| 269 | 
         
            +
                    """
         
     | 
| 270 | 
         
            +
                    # source for harmonic branch
         
     | 
| 271 | 
         
            +
                    with torch.no_grad():
         
     | 
| 272 | 
         
            +
                        sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
         
     | 
| 273 | 
         
            +
                        sine_wavs = sine_wavs.transpose(1, 2)
         
     | 
| 274 | 
         
            +
                        uv = uv.transpose(1, 2)
         
     | 
| 275 | 
         
            +
                    sine_merge = self.l_tanh(self.l_linear(sine_wavs))
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                    # source for noise branch, in the same shape as uv
         
     | 
| 278 | 
         
            +
                    noise = torch.randn_like(uv) * self.sine_amp / 3
         
     | 
| 279 | 
         
            +
                    return sine_merge, noise, uv
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
            class HiFTGenerator(nn.Module):
         
     | 
| 283 | 
         
            +
                """
         
     | 
| 284 | 
         
            +
                HiFTNet Generator: Neural Source Filter + ISTFTNet
         
     | 
| 285 | 
         
            +
                https://arxiv.org/abs/2309.09493
         
     | 
| 286 | 
         
            +
                """
         
     | 
| 287 | 
         
            +
                def __init__(
         
     | 
| 288 | 
         
            +
                        self,
         
     | 
| 289 | 
         
            +
                        in_channels: int = 80,
         
     | 
| 290 | 
         
            +
                        base_channels: int = 512,
         
     | 
| 291 | 
         
            +
                        nb_harmonics: int = 8,
         
     | 
| 292 | 
         
            +
                        sampling_rate: int = 22050,
         
     | 
| 293 | 
         
            +
                        nsf_alpha: float = 0.1,
         
     | 
| 294 | 
         
            +
                        nsf_sigma: float = 0.003,
         
     | 
| 295 | 
         
            +
                        nsf_voiced_threshold: float = 10,
         
     | 
| 296 | 
         
            +
                        upsample_rates: tp.List[int] = [8, 8],
         
     | 
| 297 | 
         
            +
                        upsample_kernel_sizes: tp.List[int] = [16, 16],
         
     | 
| 298 | 
         
            +
                        istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
         
     | 
| 299 | 
         
            +
                        resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
         
     | 
| 300 | 
         
            +
                        resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
         
     | 
| 301 | 
         
            +
                        source_resblock_kernel_sizes: tp.List[int] = [7, 11],
         
     | 
| 302 | 
         
            +
                        source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
         
     | 
| 303 | 
         
            +
                        lrelu_slope: float = 0.1,
         
     | 
| 304 | 
         
            +
                        audio_limit: float = 0.99,
         
     | 
| 305 | 
         
            +
                        f0_predictor: torch.nn.Module = None,
         
     | 
| 306 | 
         
            +
                ):
         
     | 
| 307 | 
         
            +
                    super(HiFTGenerator, self).__init__()
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    self.out_channels = 1
         
     | 
| 310 | 
         
            +
                    self.nb_harmonics = nb_harmonics
         
     | 
| 311 | 
         
            +
                    self.sampling_rate = sampling_rate
         
     | 
| 312 | 
         
            +
                    self.istft_params = istft_params
         
     | 
| 313 | 
         
            +
                    self.lrelu_slope = lrelu_slope
         
     | 
| 314 | 
         
            +
                    self.audio_limit = audio_limit
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                    self.num_kernels = len(resblock_kernel_sizes)
         
     | 
| 317 | 
         
            +
                    self.num_upsamples = len(upsample_rates)
         
     | 
| 318 | 
         
            +
                    self.m_source = SourceModuleHnNSF(
         
     | 
| 319 | 
         
            +
                        sampling_rate=sampling_rate,
         
     | 
| 320 | 
         
            +
                        upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
         
     | 
| 321 | 
         
            +
                        harmonic_num=nb_harmonics,
         
     | 
| 322 | 
         
            +
                        sine_amp=nsf_alpha,
         
     | 
| 323 | 
         
            +
                        add_noise_std=nsf_sigma,
         
     | 
| 324 | 
         
            +
                        voiced_threshod=nsf_voiced_threshold)
         
     | 
| 325 | 
         
            +
                    self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                    self.conv_pre = weight_norm(
         
     | 
| 328 | 
         
            +
                        Conv1d(in_channels, base_channels, 7, 1, padding=3)
         
     | 
| 329 | 
         
            +
                    )
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    # Up
         
     | 
| 332 | 
         
            +
                    self.ups = nn.ModuleList()
         
     | 
| 333 | 
         
            +
                    for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
         
     | 
| 334 | 
         
            +
                        self.ups.append(
         
     | 
| 335 | 
         
            +
                            weight_norm(
         
     | 
| 336 | 
         
            +
                                ConvTranspose1d(
         
     | 
| 337 | 
         
            +
                                    base_channels // (2**i),
         
     | 
| 338 | 
         
            +
                                    base_channels // (2**(i + 1)),
         
     | 
| 339 | 
         
            +
                                    k,
         
     | 
| 340 | 
         
            +
                                    u,
         
     | 
| 341 | 
         
            +
                                    padding=(k - u) // 2,
         
     | 
| 342 | 
         
            +
                                )
         
     | 
| 343 | 
         
            +
                            )
         
     | 
| 344 | 
         
            +
                        )
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                    # Down
         
     | 
| 347 | 
         
            +
                    self.source_downs = nn.ModuleList()
         
     | 
| 348 | 
         
            +
                    self.source_resblocks = nn.ModuleList()
         
     | 
| 349 | 
         
            +
                    downsample_rates = [1] + upsample_rates[::-1][:-1]
         
     | 
| 350 | 
         
            +
                    downsample_cum_rates = np.cumprod(downsample_rates)
         
     | 
| 351 | 
         
            +
                    for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
         
     | 
| 352 | 
         
            +
                                                      source_resblock_dilation_sizes)):
         
     | 
| 353 | 
         
            +
                        if u == 1:
         
     | 
| 354 | 
         
            +
                            self.source_downs.append(
         
     | 
| 355 | 
         
            +
                                Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
         
     | 
| 356 | 
         
            +
                            )
         
     | 
| 357 | 
         
            +
                        else:
         
     | 
| 358 | 
         
            +
                            self.source_downs.append(
         
     | 
| 359 | 
         
            +
                                Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
         
     | 
| 360 | 
         
            +
                            )
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                        self.source_resblocks.append(
         
     | 
| 363 | 
         
            +
                            ResBlock(base_channels // (2 ** (i + 1)), k, d)
         
     | 
| 364 | 
         
            +
                        )
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                    self.resblocks = nn.ModuleList()
         
     | 
| 367 | 
         
            +
                    for i in range(len(self.ups)):
         
     | 
| 368 | 
         
            +
                        ch = base_channels // (2**(i + 1))
         
     | 
| 369 | 
         
            +
                        for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
         
     | 
| 370 | 
         
            +
                            self.resblocks.append(ResBlock(ch, k, d))
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
         
     | 
| 373 | 
         
            +
                    self.ups.apply(init_weights)
         
     | 
| 374 | 
         
            +
                    self.conv_post.apply(init_weights)
         
     | 
| 375 | 
         
            +
                    self.reflection_pad = nn.ReflectionPad1d((1, 0))
         
     | 
| 376 | 
         
            +
                    self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
         
     | 
| 377 | 
         
            +
                    self.f0_predictor = f0_predictor
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
         
     | 
| 380 | 
         
            +
                    f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2)  # bs,n,t
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    har_source, _, _ = self.m_source(f0)
         
     | 
| 383 | 
         
            +
                    return har_source.transpose(1, 2)
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
                def _stft(self, x):
         
     | 
| 386 | 
         
            +
                    spec = torch.stft(
         
     | 
| 387 | 
         
            +
                        x,
         
     | 
| 388 | 
         
            +
                        self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
         
     | 
| 389 | 
         
            +
                        return_complex=True)
         
     | 
| 390 | 
         
            +
                    spec = torch.view_as_real(spec)  # [B, F, TT, 2]
         
     | 
| 391 | 
         
            +
                    return spec[..., 0], spec[..., 1]
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                def _istft(self, magnitude, phase):
         
     | 
| 394 | 
         
            +
                    magnitude = torch.clip(magnitude, max=1e2)
         
     | 
| 395 | 
         
            +
                    real = magnitude * torch.cos(phase)
         
     | 
| 396 | 
         
            +
                    img = magnitude * torch.sin(phase)
         
     | 
| 397 | 
         
            +
                    inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
         
     | 
| 398 | 
         
            +
                    return inverse_transform
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                def forward(self, x: torch.Tensor, f0=None) -> torch.Tensor:
         
     | 
| 401 | 
         
            +
                    if f0 is None:
         
     | 
| 402 | 
         
            +
                        f0 = self.f0_predictor(x)
         
     | 
| 403 | 
         
            +
                    s = self._f02source(f0)
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
         
     | 
| 406 | 
         
            +
                    s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                    x = self.conv_pre(x)
         
     | 
| 409 | 
         
            +
                    for i in range(self.num_upsamples):
         
     | 
| 410 | 
         
            +
                        x = F.leaky_relu(x, self.lrelu_slope)
         
     | 
| 411 | 
         
            +
                        x = self.ups[i](x)
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                        if i == self.num_upsamples - 1:
         
     | 
| 414 | 
         
            +
                            x = self.reflection_pad(x)
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                        # fusion
         
     | 
| 417 | 
         
            +
                        si = self.source_downs[i](s_stft)
         
     | 
| 418 | 
         
            +
                        si = self.source_resblocks[i](si)
         
     | 
| 419 | 
         
            +
                        x = x + si
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                        xs = None
         
     | 
| 422 | 
         
            +
                        for j in range(self.num_kernels):
         
     | 
| 423 | 
         
            +
                            if xs is None:
         
     | 
| 424 | 
         
            +
                                xs = self.resblocks[i * self.num_kernels + j](x)
         
     | 
| 425 | 
         
            +
                            else:
         
     | 
| 426 | 
         
            +
                                xs += self.resblocks[i * self.num_kernels + j](x)
         
     | 
| 427 | 
         
            +
                        x = xs / self.num_kernels
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    x = F.leaky_relu(x)
         
     | 
| 430 | 
         
            +
                    x = self.conv_post(x)
         
     | 
| 431 | 
         
            +
                    magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
         
     | 
| 432 | 
         
            +
                    phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :])  # actually, sin is redundancy
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                    x = self._istft(magnitude, phase)
         
     | 
| 435 | 
         
            +
                    x = torch.clamp(x, -self.audio_limit, self.audio_limit)
         
     | 
| 436 | 
         
            +
                    return x
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                def remove_weight_norm(self):
         
     | 
| 439 | 
         
            +
                    print('Removing weight norm...')
         
     | 
| 440 | 
         
            +
                    for l in self.ups:
         
     | 
| 441 | 
         
            +
                        remove_weight_norm(l)
         
     | 
| 442 | 
         
            +
                    for l in self.resblocks:
         
     | 
| 443 | 
         
            +
                        l.remove_weight_norm()
         
     | 
| 444 | 
         
            +
                    remove_weight_norm(self.conv_pre)
         
     | 
| 445 | 
         
            +
                    remove_weight_norm(self.conv_post)
         
     | 
| 446 | 
         
            +
                    self.source_module.remove_weight_norm()
         
     | 
| 447 | 
         
            +
                    for l in self.source_downs:
         
     | 
| 448 | 
         
            +
                        remove_weight_norm(l)
         
     | 
| 449 | 
         
            +
                    for l in self.source_resblocks:
         
     | 
| 450 | 
         
            +
                        l.remove_weight_norm()
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                @torch.inference_mode()
         
     | 
| 453 | 
         
            +
                def inference(self, mel: torch.Tensor, f0=None) -> torch.Tensor:
         
     | 
| 454 | 
         
            +
                    return self.forward(x=mel, f0=f0)
         
     |