Spaces:
Paused
Paused
Update modules/cosyvoice_tokenizer/frontend.py
Browse files
modules/cosyvoice_tokenizer/frontend.py
CHANGED
|
@@ -1,54 +1,52 @@
|
|
| 1 |
-
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
from functools import partial
|
| 15 |
-
import onnxruntime
|
| 16 |
-
import torch
|
| 17 |
-
import numpy as np
|
| 18 |
-
import whisper
|
| 19 |
-
import torchaudio.compliance.kaldi as kaldi
|
| 20 |
-
|
| 21 |
-
class CosyVoiceFrontEnd:
|
| 22 |
-
|
| 23 |
-
def __init__(self, speech_tokenizer_model: str, device: str = 'cuda', device_id: int = 0):
|
| 24 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 25 |
-
option = onnxruntime.SessionOptions()
|
| 26 |
-
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 27 |
-
option.intra_op_num_threads = 1
|
| 28 |
-
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"if device == "cuda" else "CPUExecutionProvider"])
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
speech_token =
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
embedding
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
speech_feat = speech_feat.unsqueeze(dim=0)
|
| 53 |
-
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
| 54 |
return speech_feat, speech_feat_len
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from functools import partial
|
| 15 |
+
import onnxruntime
|
| 16 |
+
import torch
|
| 17 |
+
import numpy as np
|
| 18 |
+
import whisper
|
| 19 |
+
import torchaudio.compliance.kaldi as kaldi
|
| 20 |
+
|
| 21 |
+
class CosyVoiceFrontEnd:
|
| 22 |
+
|
| 23 |
+
def __init__(self, speech_tokenizer_model: str, device: str = 'cuda', device_id: int = 0):
|
| 24 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 25 |
+
option = onnxruntime.SessionOptions()
|
| 26 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 27 |
+
option.intra_op_num_threads = 1
|
| 28 |
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider" if device == "cuda" and torch.cuda.is_available() else "CPUExecutionProvider"])
|
| 29 |
+
|
| 30 |
+
def extract_speech_token(self, speech):
|
| 31 |
+
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
| 32 |
+
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
| 33 |
+
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
| 34 |
+
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
| 35 |
+
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
| 36 |
+
return speech_token, speech_token_len
|
| 37 |
+
|
| 38 |
+
def _extract_spk_embedding(self, speech):
|
| 39 |
+
feat = kaldi.fbank(speech,
|
| 40 |
+
num_mel_bins=80,
|
| 41 |
+
dither=0,
|
| 42 |
+
sample_frequency=16000)
|
| 43 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
| 44 |
+
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
| 45 |
+
embedding = torch.tensor([embedding]).to(self.device)
|
| 46 |
+
return embedding
|
| 47 |
+
|
| 48 |
+
def _extract_speech_feat(self, speech):
|
| 49 |
+
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
| 50 |
+
speech_feat = speech_feat.unsqueeze(dim=0)
|
| 51 |
+
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
|
|
|
|
|
|
| 52 |
return speech_feat, speech_feat_len
|