WebSearchLLM / app.py
cnmoro's picture
Update app.py
3094e1a verified
raw
history blame
6.92 kB
import time, os, multiprocessing, torch, requests, asyncio, json, aiohttp
from minivectordb.embedding_model import EmbeddingModel
from minivectordb.vector_database import VectorDatabase
from text_util_en_pt.cleaner import structurize_text, detect_language, Language
from webtextcrawler.webtextcrawler import extract_text_from_url
import gradio as gr
from googlesearch import search
torch.set_num_threads(2)
openrouter_key = os.environ.get("OPENROUTER_KEY")
model = EmbeddingModel(use_quantized_onnx_model=True)
def fetch_links(query, max_results=10):
return list(search(query, num_results=max_results))
def fetch_texts(links):
with multiprocessing.Pool(10) as pool:
texts = pool.map(extract_text_from_url, links)
return '\n'.join([t for t in texts if t])
def index_and_search(query, text):
start = time.time()
query_embedding = model.extract_embeddings(query)
# Indexing
vector_db = VectorDatabase()
sentences = [ s['sentence'] for s in structurize_text(text)]
for idx, sentence in enumerate(sentences):
sentence_embedding = model.extract_embeddings(sentence)
vector_db.store_embedding(idx + 1, sentence_embedding, {'sentence': sentence})
embedding_time = time.time() - start
# Retrieval
start = time.time()
search_results = vector_db.find_most_similar(query_embedding, k = 30)
retrieval_time = time.time() - start
return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time
def generate_search_terms(message, lang):
if lang == Language.ptbr:
prompt = f"A partir do texto a seguir, gere alguns termos de pesquisa: \"{message}\"\nSua resposta deve ser apenas o termo de busca mais adequado, e nada mais."
else:
prompt = f"From the following text, generate some search terms: \"{message}\"\nYour answer should be just the most appropriate search term, and nothing else."
url = "https://openrouter.ai/api/v1/chat/completions"
headers = { "Content-Type": "application/json",
"Authorization": f"Bearer {openrouter_key}" }
body = { "stream": False,
"models": [
"mistralai/mistral-7b-instruct:free",
"openchat/openchat-7b:free"
],
"route": "fallback",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": prompt}
] }
response = requests.post(url, headers=headers, json=body)
return response.json()['choices'][0]['message']['content']
async def predict(message, history):
full_response = ""
query_language = detect_language(message)
start = time.time()
full_response += "Generating search terms...\n"
yield full_response
search_query = generate_search_terms(message, query_language)
search_terms_time = time.time() - start
full_response += f"Search terms: \"{search_query}\"\n"
yield full_response
full_response += f"Search terms took: {search_terms_time:.4f} seconds\n"
yield full_response
start = time.time()
full_response += "\nSearching the web...\n"
yield full_response
links = fetch_links(search_query)
websearch_time = time.time() - start
full_response += f"Web search took: {websearch_time:.4f} seconds\n"
yield full_response
full_response += f"Links visited:\n"
yield full_response
for link in links:
full_response += f"{link}\n"
yield full_response
full_response += "\nExtracting text from web pages...\n"
yield full_response
start = time.time()
text = fetch_texts(links)
webcrawl_time = time.time() - start
full_response += f"Text extraction took: {webcrawl_time:.4f} seconds\n"
full_response += "\nIndexing in vector database and building prompt...\n"
yield full_response
context, embedding_time, retrieval_time = index_and_search(message, text)
if query_language == Language.ptbr:
prompt = f"Contexto:\n{context}\n\nResponda: \"{message}\"\n(Você pode utilizar o contexto para responder)\n(Sua resposta deve ser completa, detalhada e bem estruturada)"
else:
prompt = f"Context:\n{context}\n\nAnswer: \"{message}\"\n(You can use the context to answer)\n(Your answer should be complete, detailed and well-structured)"
full_response += f"Embedding time: {embedding_time:.4f} seconds\n"
full_response += f"Retrieval from VectorDB time: {retrieval_time:.4f} seconds\n"
yield full_response
full_response += "\nGenerating response...\n"
yield full_response
full_response += "\nResponse: "
url = "https://openrouter.ai/api/v1/chat/completions"
headers = { "Content-Type": "application/json",
"Authorization": f"Bearer {openrouter_key}" }
body = { "stream": True,
"models": [
"mistralai/mistral-7b-instruct:free",
"openchat/openchat-7b:free"
],
"route": "fallback",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": prompt}
] }
async with aiohttp.ClientSession() as session:
async with session.post(url, headers=headers, json=body) as response:
buffer = "" # A buffer to hold incomplete lines of data
async for chunk in response.content.iter_any():
buffer += chunk.decode()
while "\n" in buffer: # Process as long as there are complete lines in the buffer
line, buffer = buffer.split("\n", 1)
if line.startswith("data: "):
event_data = line[len("data: "):]
if event_data != '[DONE]':
try:
current_text = json.loads(event_data)['choices'][0]['delta']['content']
full_response += current_text
yield full_response
await asyncio.sleep(0.01)
except Exception:
try:
current_text = json.loads(event_data)['choices'][0]['text']
full_response += current_text
yield full_response
await asyncio.sleep(0.01)
except Exception:
pass
gr.ChatInterface(
predict,
title="Web Search with LLM",
description="Ask any question, and I will try to answer it using web search",
retry_btn=None,
undo_btn=None,
examples=[
'When did the first human land on the moon?',
'Liquid vs solid vs gas?',
'What is the capital of France?',
'Why does Brazil has a high tax rate?'
]
).launch()