soho-clip / app.py
sohojoe's picture
revert torch_size so is 16 on cuda
7989328
raw
history blame
11.3 kB
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from diffusers import StableDiffusionPipeline, StableDiffusionImageVariationPipeline, DiffusionPipeline
import numpy as np
import pandas as pd
import math
from transformers import CLIPTextModel, CLIPTokenizer
# model_id = "stabilityai/stable-diffusion-2-1-base"
# text_model_id = "CompVis/stable-diffusion-v-1-4-original"
# text_model_id = "CompVis/stable-diffusion-v1-4"
text_model_id = "runwayml/stable-diffusion-v1-5"
# text_model_id = "stabilityai/stable-diffusion-2-1-base"
model_id = "lambdalabs/sd-image-variations-diffusers"
clip_model_id = "openai/clip-vit-large-patch14-336"
max_tabs = 10
input_images = [None for i in range(max_tabs)]
input_prompts = [None for i in range(max_tabs)]
embedding_plots = [None for i in range(max_tabs)]
# global embedding_base64s
embedding_base64s = [None for i in range(max_tabs)]
# embedding_base64s = gr.State(value=[None for i in range(max_tabs)])
def image_to_embedding(input_im):
tform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(
(224, 224),
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=False,
),
transforms.Normalize(
[0.48145466, 0.4578275, 0.40821073],
[0.26862954, 0.26130258, 0.27577711]),
])
inp = tform(input_im).to(device)
dtype = next(pipe.image_encoder.parameters()).dtype
image = inp.tile(1, 1, 1, 1).to(device=device, dtype=dtype)
image_embeddings = pipe.image_encoder(image).image_embeds
image_embeddings = image_embeddings[0]
image_embeddings_np = image_embeddings.cpu().detach().numpy()
return image_embeddings_np
def prompt_to_embedding(prompt):
# inputs = processor(prompt, images=imgs, return_tensors="pt", padding=True)
inputs = processor(prompt, return_tensors="pt", padding='max_length', max_length=77)
# labels = torch.tensor(labels)
# prompt_tokens = inputs.input_ids[0]
prompt_tokens = inputs.input_ids
# image = inputs.pixel_values
with torch.no_grad():
prompt_embededdings = model.get_text_features(prompt_tokens.to(device))
prompt_embededdings = prompt_embededdings[0].cpu().detach().numpy()
return prompt_embededdings
def embedding_to_image(embeddings):
size = math.ceil(math.sqrt(embeddings.shape[0]))
image_embeddings_square = np.pad(embeddings, (0, size**2 - embeddings.shape[0]), 'constant')
image_embeddings_square.resize(size,size)
embedding_image = Image.fromarray(image_embeddings_square, mode="L")
return embedding_image
def embedding_to_base64(embeddings):
import base64
# ensure float16
embeddings = embeddings.astype(np.float16)
embeddings_b64 = base64.urlsafe_b64encode(embeddings).decode()
return embeddings_b64
def base64_to_embedding(embeddings_b64):
import base64
embeddings = base64.urlsafe_b64decode(embeddings_b64)
embeddings = np.frombuffer(embeddings, dtype=np.float16)
# embeddings = torch.tensor(embeddings)
return embeddings
def main(
# input_im,
embeddings,
scale=3.0,
n_samples=4,
steps=25,
seed=0
):
if seed == None:
seed = np.random.randint(2147483647)
# if device contains cuda
if device.type == 'cuda':
generator = torch.Generator(device=device).manual_seed(int(seed))
else:
generator = torch.Generator().manual_seed(int(seed)) # use cpu as does not work on mps
embeddings = base64_to_embedding(embeddings)
embeddings = torch.tensor(embeddings, dtype=torch_size).to(device)
images_list = pipe(
# inp.tile(n_samples, 1, 1, 1),
# [embeddings * n_samples],
embeddings,
guidance_scale=scale,
num_inference_steps=steps,
generator=generator,
)
images = []
for i, image in enumerate(images_list["images"]):
images.append(image)
# images.append(embedding_image)
return images
def on_image_load_update_embeddings(image_data):
# image to embeddings
if image_data is None:
# embeddings = prompt_to_embedding('')
# embeddings_b64 = embedding_to_base64(embeddings)
# return gr.Text.update(embeddings_b64)
return gr.Text.update('')
embeddings = image_to_embedding(image_data)
embeddings_b64 = embedding_to_base64(embeddings)
return gr.Text.update(embeddings_b64)
def on_prompt_change_update_embeddings(prompt):
# prompt to embeddings
if prompt is None or prompt == "":
embeddings = prompt_to_embedding('')
embeddings_b64 = embedding_to_base64(embeddings)
return gr.Text.update(embedding_to_base64(embeddings))
embeddings = prompt_to_embedding(prompt)
embeddings_b64 = embedding_to_base64(embeddings)
return gr.Text.update(embeddings_b64)
# def on_embeddings_changed_update_average_embeddings(last_embedding_base64):
# def on_embeddings_changed_update_average_embeddings(embedding_base64s):
def on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_base64, idx):
# global embedding_base64s
final_embedding = None
num_embeddings = 0
embedding_base64s_state[idx] = embedding_base64 if embedding_base64 != '' else None
# for textbox in embedding_base64s:
# embedding_base64 = textbox.value
for embedding_base64 in embedding_base64s_state:
if embedding_base64 is None or embedding_base64 == "":
continue
embedding = base64_to_embedding(embedding_base64)
if final_embedding is None:
final_embedding = embedding
else:
final_embedding = final_embedding + embedding
num_embeddings += 1
if final_embedding is None:
# embeddings = prompt_to_embedding('')
# embeddings_b64 = embedding_to_base64(embeddings)
# return gr.Text.update(embeddings_b64)
return gr.Text.update('')
final_embedding = final_embedding / num_embeddings
embeddings_b64 = embedding_to_base64(final_embedding)
return gr.Text.update(embeddings_b64)
def on_embeddings_changed_update_plot(embeddings_b64):
# plot new embeddings
if embeddings_b64 is None or embeddings_b64 == "":
data = pd.DataFrame({
'embedding': [],
'index': []})
return gr.LinePlot.update(data,
x="index",
y="embedding",
# color="country",
title="Embeddings",
# stroke_dash="cluster",
# x_lim=[1950, 2010],
tooltip=['index', 'embedding'],
# stroke_dash_legend_title="Country Cluster",
# height=300,
width=0)
embeddings = base64_to_embedding(embeddings_b64)
data = pd.DataFrame({
'embedding': embeddings,
'index': [n for n in range(len(embeddings))]})
return gr.LinePlot.update(data,
x="index",
y="embedding",
# color="country",
title="Embeddings",
# stroke_dash="cluster",
# x_lim=[1950, 2010],
tooltip=['index', 'embedding'],
# stroke_dash_legend_title="Country Cluster",
# height=300,
width=embeddings.shape[0])
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda:0" if torch.cuda.is_available() else "cpu")
torch_size = torch.float16 if device == ('cuda') else torch.float32
# torch_size = torch.float32
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="pipeline.py",
torch_dtype=torch_size,
# , revision="fp16",
requires_safety_checker = False, safety_checker=None,
text_encoder = CLIPTextModel,
tokenizer = CLIPTokenizer,
)
pipe = pipe.to(device)
from transformers import AutoProcessor, AutoModel
processor = AutoProcessor.from_pretrained(clip_model_id)
model = AutoModel.from_pretrained(clip_model_id)
model = model.to(device)
examples = [
["frog.png", 3, 1, 25, 0],
["img0.jpg", 3, 1, 25, 0],
["img1.jpg", 3, 1, 25, 0],
["img2.jpg", 3, 1, 25, 0],
["img3.jpg", 3, 1, 25, 0],
]
with gr.Blocks() as demo:
with gr.Row():
for i in range(max_tabs):
with gr.Tab(f"Input {i+1}"):
with gr.Row():
with gr.Column(scale=1, min_width=240):
input_images[i] = gr.Image()
with gr.Column(scale=3, min_width=600):
embedding_plots[i] = gr.LinePlot(show_label=False).style(container=False)
# input_image.change(on_image_load, inputs= [input_image, plot])
with gr.Row():
with gr.Column(scale=2, min_width=240):
input_prompts[i] = gr.Textbox()
with gr.Column(scale=3, min_width=600):
with gr.Accordion(f"Embeddings (base64)", open=False):
embedding_base64s[i] = gr.Textbox(show_label=False)
with gr.Row():
average_embedding_plot = gr.LinePlot(show_label=True, label="Average Embeddings (base64)").style(container=False)
with gr.Row():
with gr.Accordion(f"Avergage embeddings in base 64", open=False):
average_embedding_base64 = gr.Textbox(show_label=False)
with gr.Row():
with gr.Column(scale=1, min_width=200):
scale = gr.Slider(0, 25, value=3, step=1, label="Guidance scale")
with gr.Column(scale=1, min_width=200):
n_samples = gr.Slider(1, 4, value=1, step=1, label="Number images")
with gr.Column(scale=1, min_width=200):
steps = gr.Slider(5, 50, value=25, step=5, label="Steps")
with gr.Column(scale=1, min_width=200):
seed = gr.Number(None, label="Seed", precision=0)
with gr.Row():
submit = gr.Button("Submit")
with gr.Row():
output = gr.Gallery(label="Generated variations")
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
for i in range(max_tabs):
input_images[i].change(on_image_load_update_embeddings, input_images[i], [embedding_base64s[i]])
input_prompts[i].submit(on_prompt_change_update_embeddings, input_prompts[i], [embedding_base64s[i]])
embedding_base64s[i].change(on_embeddings_changed_update_plot, embedding_base64s[i], [embedding_plots[i]])
# embedding_plots[i].change(on_plot_changed, embedding_base64s[i], average_embedding_base64)
# embedding_plots[i].change(on_embeddings_changed_update_average_embeddings, embedding_base64s[i], average_embedding_base64)
idx_state = gr.State(value=i)
embedding_base64s[i].change(on_embeddings_changed_update_average_embeddings, [embedding_base64s_state, embedding_base64s[i], idx_state], average_embedding_base64)
average_embedding_base64.change(on_embeddings_changed_update_plot, average_embedding_base64, average_embedding_plot)
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
submit.click(main, inputs= [average_embedding_base64, scale, n_samples, steps, seed], outputs=output)
output.style(grid=2)
if __name__ == "__main__":
demo.launch()