|
import time |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
import ray |
|
from ray import serve |
|
from clip_retrieval.load_clip import load_clip, get_tokenizer |
|
|
|
|
|
|
|
|
|
class CLIPModel: |
|
def __init__(self): |
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
self._test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg" |
|
self._clip_model="ViT-L/14" |
|
self._clip_model_id ="laion5B-L-14" |
|
|
|
self.model, self.preprocess = load_clip(self._clip_model, use_jit=True, device=self.device) |
|
self.tokenizer = get_tokenizer(self._clip_model) |
|
|
|
print ("using device", self.device) |
|
|
|
|
|
def test_to_embeddings(self, prompt): |
|
text = self.tokenizer([prompt]).to(self.device) |
|
with torch.no_grad(): |
|
prompt_embededdings = self.model.encode_text(text) |
|
prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True) |
|
return(prompt_embededdings) |
|
|
|
def image_to_embeddings(self, input_im): |
|
input_im = Image.fromarray(input_im) |
|
prepro = self.preprocess(input_im).unsqueeze(0).to(self.device) |
|
with torch.no_grad(): |
|
image_embeddings = self.model.encode_image(prepro) |
|
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) |
|
return(image_embeddings) |
|
|
|
def preprocessed_image_to_emdeddings(self, prepro): |
|
with torch.no_grad(): |
|
image_embeddings = self.model.encode_image(prepro) |
|
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) |
|
return(image_embeddings) |
|
|
|
|
|
def regression_test(self): |
|
text_embeddings = self.test_to_embeddings("Howdy!") |
|
print("text embeddings", text_embeddings) |
|
|
|
|
|
import requests |
|
from io import BytesIO |
|
response = requests.get(self._test_image_url) |
|
input_image = Image.open(BytesIO(response.content)) |
|
input_image = input_image.convert('RGB') |
|
|
|
input_image = np.array(input_image) |
|
image_embeddings = self.image_to_embeddings(input_image) |
|
print("image embeddings", image_embeddings) |
|
|
|
input_im = Image.fromarray(input_image) |
|
prepro = self.preprocess(input_im).unsqueeze(0).to(self.device) |
|
image_embeddings = self.preprocessed_image_to_emdeddings(prepro) |
|
print("image embeddings", image_embeddings) |
|
|
|
|
|
test_instance = CLIPModel() |
|
test_instance.regression_test() |
|
|
|
ray.init() |
|
serve.start() |
|
|
|
serve.create_backend("clip_model", CLIPModel) |
|
serve.create_endpoint("clip_model", backend="clip_model", route="/clip_model") |
|
|
|
|
|
|
|
import requests |
|
|
|
input_prompt = "Howdy!" |
|
response = requests.get("http://localhost:8000/clip_model", json={"prompt": input_prompt}) |
|
print(response.json()) |
|
|
|
|
|
|