|
import time |
|
import numpy as np |
|
import torch |
|
|
|
num_steps = 1000 |
|
test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg" |
|
clip_model="ViT-L/14" |
|
clip_model_id ="laion5B-L-14" |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
print ("using device", device) |
|
|
|
from clip_retrieval.load_clip import load_clip, get_tokenizer |
|
|
|
model, preprocess = load_clip(clip_model, use_jit=True, device=device) |
|
tokenizer = get_tokenizer(clip_model) |
|
|
|
def test_text(prompt): |
|
text = tokenizer([prompt]).to(device) |
|
with torch.no_grad(): |
|
prompt_embededdings = model.encode_text(text) |
|
prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True) |
|
return(prompt_embededdings) |
|
|
|
def test_image(input_im): |
|
input_im = Image.fromarray(input_im) |
|
prepro = preprocess(input_im).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
image_embeddings = model.encode_image(prepro) |
|
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) |
|
return(image_embeddings) |
|
|
|
def test_preprocessed_image(prepro): |
|
with torch.no_grad(): |
|
image_embeddings = model.encode_image(prepro) |
|
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) |
|
return(image_embeddings) |
|
|
|
|
|
|
|
start = time.time() |
|
for i in range(num_steps): |
|
test_text("todo") |
|
end = time.time() |
|
average_time_seconds = (end - start) / num_steps |
|
average_time_seconds = average_time_seconds if average_time_seconds > 0 else 0.0000001 |
|
print("Average time for text: ", average_time_seconds, "s") |
|
print("Average time for text: ", average_time_seconds * 1000, "ms") |
|
print("Number of predictions per second for text: ", 1 / average_time_seconds) |
|
|
|
|
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
response = requests.get(test_image_url) |
|
input_image = Image.open(BytesIO(response.content)) |
|
input_image = input_image.convert('RGB') |
|
|
|
input_image = np.array(input_image) |
|
|
|
|
|
start = time.time() |
|
for i in range(num_steps): |
|
test_image(input_image) |
|
end = time.time() |
|
average_time_seconds = (end - start) / num_steps |
|
print("Average time for image: ", average_time_seconds, "s") |
|
print("Average time for image: ", average_time_seconds * 1000, "ms") |
|
print("Number of predictions per second for image: ", 1 / average_time_seconds) |
|
|
|
|
|
input_im = Image.fromarray(input_image) |
|
prepro = preprocess(input_im).unsqueeze(0).to(device) |
|
|
|
start = time.time() |
|
for i in range(num_steps): |
|
test_preprocessed_image(prepro) |
|
end = time.time() |
|
average_time_seconds = (end - start) / num_steps |
|
print("Average time for preprocessed image: ", average_time_seconds, "s") |
|
print("Average time for preprocessed image: ", average_time_seconds * 1000, "ms") |
|
print("Number of predictions per second for preprocessed image: ", 1 / average_time_seconds) |
|
|
|
|
|
|