Spaces:
Runtime error
Runtime error
refactor: in/out_audio/video to audio/video_input/output
Browse files- charles_actor.py +8 -8
- respond_to_prompt_actor.py +2 -2
- streamlit_av_queue.py +16 -16
- webrtc_av_queue_actor.py +31 -31
charles_actor.py
CHANGED
@@ -33,15 +33,15 @@ class CharlesActor:
|
|
33 |
self._state = "000 - creating StreamlitAVQueue"
|
34 |
from streamlit_av_queue import StreamlitAVQueue
|
35 |
self._streamlit_av_queue = StreamlitAVQueue()
|
36 |
-
self.
|
37 |
-
self.
|
38 |
|
39 |
print("001 - create RespondToPromptActor")
|
40 |
self._state = "001 - creating RespondToPromptActor"
|
41 |
from respond_to_prompt_actor import RespondToPromptActor
|
42 |
self._environment_state_actor = EnvironmentStateActor.remote()
|
43 |
self._agent_state_actor = AgentStateActor.remote()
|
44 |
-
self._respond_to_prompt_actor = RespondToPromptActor.remote(self._environment_state_actor, self.
|
45 |
|
46 |
print("002 - create SpeechToTextVoskActor")
|
47 |
self._state = "002 - creating SpeechToTextVoskActor"
|
@@ -114,7 +114,7 @@ class CharlesActor:
|
|
114 |
env_state = await self._environment_state_actor.begin_next_step.remote()
|
115 |
self._environment_state = env_state
|
116 |
self._agent_state_actor.begin_step.remote()
|
117 |
-
audio_frames = await self._streamlit_av_queue.
|
118 |
video_frames = await self._streamlit_av_queue.get_video_frames_async()
|
119 |
|
120 |
if len(audio_frames) > 0:
|
@@ -211,15 +211,15 @@ class CharlesActor:
|
|
211 |
await asyncio.sleep(0.01)
|
212 |
|
213 |
# add observations to the environment state
|
214 |
-
count = len(self.
|
215 |
is_talking = bool(count > 0)
|
216 |
has_spoken_for_this_prompt = has_spoken_for_this_prompt or is_talking
|
217 |
frame = self._animator.update(is_talking)
|
218 |
-
if self.
|
219 |
-
evicted_item = await self.
|
220 |
del evicted_item
|
221 |
frame_ref = ray.put(frame)
|
222 |
-
await self.
|
223 |
|
224 |
loops+=1
|
225 |
self._state = f"Processed {total_video_frames} video frames and {total_audio_frames} audio frames, loops: {loops}. loops per second: {loops/(time.time()-start_time):.2f}. Is speaking: {is_talking}({count}). {vector_debug}"
|
|
|
33 |
self._state = "000 - creating StreamlitAVQueue"
|
34 |
from streamlit_av_queue import StreamlitAVQueue
|
35 |
self._streamlit_av_queue = StreamlitAVQueue()
|
36 |
+
self._audio_output_queue = await self._streamlit_av_queue.get_audio_output_queue()
|
37 |
+
self._video_output_queue = await self._streamlit_av_queue.get_video_output_queue()
|
38 |
|
39 |
print("001 - create RespondToPromptActor")
|
40 |
self._state = "001 - creating RespondToPromptActor"
|
41 |
from respond_to_prompt_actor import RespondToPromptActor
|
42 |
self._environment_state_actor = EnvironmentStateActor.remote()
|
43 |
self._agent_state_actor = AgentStateActor.remote()
|
44 |
+
self._respond_to_prompt_actor = RespondToPromptActor.remote(self._environment_state_actor, self._audio_output_queue)
|
45 |
|
46 |
print("002 - create SpeechToTextVoskActor")
|
47 |
self._state = "002 - creating SpeechToTextVoskActor"
|
|
|
114 |
env_state = await self._environment_state_actor.begin_next_step.remote()
|
115 |
self._environment_state = env_state
|
116 |
self._agent_state_actor.begin_step.remote()
|
117 |
+
audio_frames = await self._streamlit_av_queue.get_audio_input_frames_async()
|
118 |
video_frames = await self._streamlit_av_queue.get_video_frames_async()
|
119 |
|
120 |
if len(audio_frames) > 0:
|
|
|
211 |
await asyncio.sleep(0.01)
|
212 |
|
213 |
# add observations to the environment state
|
214 |
+
count = len(self._audio_output_queue)
|
215 |
is_talking = bool(count > 0)
|
216 |
has_spoken_for_this_prompt = has_spoken_for_this_prompt or is_talking
|
217 |
frame = self._animator.update(is_talking)
|
218 |
+
if self._video_output_queue.full():
|
219 |
+
evicted_item = await self._video_output_queue.get_async()
|
220 |
del evicted_item
|
221 |
frame_ref = ray.put(frame)
|
222 |
+
await self._video_output_queue.put_async(frame_ref)
|
223 |
|
224 |
loops+=1
|
225 |
self._state = f"Processed {total_video_frames} video frames and {total_audio_frames} audio frames, loops: {loops}. loops per second: {loops/(time.time()-start_time):.2f}. Is speaking: {is_talking}({count}). {vector_debug}"
|
respond_to_prompt_actor.py
CHANGED
@@ -144,14 +144,14 @@ class RespondToPromptActor:
|
|
144 |
def __init__(
|
145 |
self,
|
146 |
environment_state_actor:EnvironmentStateActor,
|
147 |
-
|
148 |
voice_id="2OviOUQc1JsQRQgNkVBj"
|
149 |
self.prompt_queue = Queue(maxsize=100)
|
150 |
self.llm_sentence_queue = Queue(maxsize=100)
|
151 |
self.speech_chunk_queue = Queue(maxsize=100)
|
152 |
self.environment_state_actor = environment_state_actor
|
153 |
|
154 |
-
self.ffmpeg_converter_actor = FFMpegConverterActor.remote(
|
155 |
|
156 |
self.prompt_to_llm = PromptToLLMActor.remote(
|
157 |
self.environment_state_actor,
|
|
|
144 |
def __init__(
|
145 |
self,
|
146 |
environment_state_actor:EnvironmentStateActor,
|
147 |
+
audio_output_queue):
|
148 |
voice_id="2OviOUQc1JsQRQgNkVBj"
|
149 |
self.prompt_queue = Queue(maxsize=100)
|
150 |
self.llm_sentence_queue = Queue(maxsize=100)
|
151 |
self.speech_chunk_queue = Queue(maxsize=100)
|
152 |
self.environment_state_actor = environment_state_actor
|
153 |
|
154 |
+
self.ffmpeg_converter_actor = FFMpegConverterActor.remote(audio_output_queue)
|
155 |
|
156 |
self.prompt_to_llm = PromptToLLMActor.remote(
|
157 |
self.environment_state_actor,
|
streamlit_av_queue.py
CHANGED
@@ -23,7 +23,7 @@ class StreamlitAVQueue:
|
|
23 |
name="WebRtcAVQueueActor",
|
24 |
get_if_exists=True,
|
25 |
).remote()
|
26 |
-
self.
|
27 |
|
28 |
def set_looking_listening(self, looking, listening: bool):
|
29 |
with self._lock:
|
@@ -38,16 +38,16 @@ class StreamlitAVQueue:
|
|
38 |
try:
|
39 |
with self._lock:
|
40 |
should_look = self._looking
|
41 |
-
|
42 |
-
if
|
43 |
-
self.
|
44 |
for i, frame in enumerate(frames):
|
45 |
user_image = frame.to_ndarray(format="rgb24")
|
46 |
if should_look:
|
47 |
shared_tensor_ref = ray.put(user_image)
|
48 |
-
await self.queue_actor.
|
49 |
-
if self.
|
50 |
-
frame = self.
|
51 |
# resize user image to 1/4 size
|
52 |
user_frame = cv2.resize(user_image, (user_image.shape[1]//4, user_image.shape[0]//4), interpolation=cv2.INTER_AREA)
|
53 |
# flip horizontally
|
@@ -85,7 +85,7 @@ class StreamlitAVQueue:
|
|
85 |
sound_chunk += sound
|
86 |
shared_buffer = np.array(sound_chunk.get_array_of_samples())
|
87 |
shared_buffer_ref = ray.put(shared_buffer)
|
88 |
-
await self.queue_actor.
|
89 |
except Exception as e:
|
90 |
print (e)
|
91 |
|
@@ -97,7 +97,7 @@ class StreamlitAVQueue:
|
|
97 |
# print (f"frame: {frame.format.name}, {frame.layout.name}, {frame.sample_rate}, {frame.samples}")
|
98 |
assert frame.format.bytes == 2
|
99 |
assert frame.format.name == 's16'
|
100 |
-
frame_as_bytes = await self.queue_actor.
|
101 |
if frame_as_bytes:
|
102 |
# print(f"frame_as_bytes: {len(frame_as_bytes)}")
|
103 |
assert len(frame_as_bytes) == frame.samples * frame.format.bytes
|
@@ -115,16 +115,16 @@ class StreamlitAVQueue:
|
|
115 |
print (e)
|
116 |
return new_frames
|
117 |
|
118 |
-
async def
|
119 |
-
shared_buffers = await self.queue_actor.
|
120 |
return shared_buffers
|
121 |
|
122 |
async def get_video_frames_async(self) -> List[av.AudioFrame]:
|
123 |
-
shared_tensors = await self.queue_actor.
|
124 |
return shared_tensors
|
125 |
|
126 |
-
def
|
127 |
-
return self.queue_actor.
|
128 |
|
129 |
-
def
|
130 |
-
return self.queue_actor.
|
|
|
23 |
name="WebRtcAVQueueActor",
|
24 |
get_if_exists=True,
|
25 |
).remote()
|
26 |
+
self._video_output_frame = None
|
27 |
|
28 |
def set_looking_listening(self, looking, listening: bool):
|
29 |
with self._lock:
|
|
|
38 |
try:
|
39 |
with self._lock:
|
40 |
should_look = self._looking
|
41 |
+
next_video_output_frame = await self.queue_actor.get_video_output_frame.remote()
|
42 |
+
if next_video_output_frame is not None:
|
43 |
+
self._video_output_frame = next_video_output_frame
|
44 |
for i, frame in enumerate(frames):
|
45 |
user_image = frame.to_ndarray(format="rgb24")
|
46 |
if should_look:
|
47 |
shared_tensor_ref = ray.put(user_image)
|
48 |
+
await self.queue_actor.enqueue_video_input_frame.remote(shared_tensor_ref)
|
49 |
+
if self._video_output_frame is not None:
|
50 |
+
frame = self._video_output_frame
|
51 |
# resize user image to 1/4 size
|
52 |
user_frame = cv2.resize(user_image, (user_image.shape[1]//4, user_image.shape[0]//4), interpolation=cv2.INTER_AREA)
|
53 |
# flip horizontally
|
|
|
85 |
sound_chunk += sound
|
86 |
shared_buffer = np.array(sound_chunk.get_array_of_samples())
|
87 |
shared_buffer_ref = ray.put(shared_buffer)
|
88 |
+
await self.queue_actor.enqueue_audio_input_frame.remote(shared_buffer_ref)
|
89 |
except Exception as e:
|
90 |
print (e)
|
91 |
|
|
|
97 |
# print (f"frame: {frame.format.name}, {frame.layout.name}, {frame.sample_rate}, {frame.samples}")
|
98 |
assert frame.format.bytes == 2
|
99 |
assert frame.format.name == 's16'
|
100 |
+
frame_as_bytes = await self.queue_actor.get_audio_output_frame.remote()
|
101 |
if frame_as_bytes:
|
102 |
# print(f"frame_as_bytes: {len(frame_as_bytes)}")
|
103 |
assert len(frame_as_bytes) == frame.samples * frame.format.bytes
|
|
|
115 |
print (e)
|
116 |
return new_frames
|
117 |
|
118 |
+
async def get_audio_input_frames_async(self) -> List[av.AudioFrame]:
|
119 |
+
shared_buffers = await self.queue_actor.get_audio_input_frames.remote()
|
120 |
return shared_buffers
|
121 |
|
122 |
async def get_video_frames_async(self) -> List[av.AudioFrame]:
|
123 |
+
shared_tensors = await self.queue_actor.get_video_input_frames.remote()
|
124 |
return shared_tensors
|
125 |
|
126 |
+
def get_audio_output_queue(self)->Queue:
|
127 |
+
return self.queue_actor.get_audio_output_queue.remote()
|
128 |
|
129 |
+
def get_video_output_queue(self)->Queue:
|
130 |
+
return self.queue_actor.get_video_output_queue.remote()
|
webrtc_av_queue_actor.py
CHANGED
@@ -8,58 +8,58 @@ import numpy as np
|
|
8 |
@ray.remote
|
9 |
class WebRtcAVQueueActor:
|
10 |
def __init__(self):
|
11 |
-
self.
|
12 |
-
self.
|
13 |
-
self.
|
14 |
-
self.
|
15 |
|
16 |
|
17 |
-
async def
|
18 |
-
if self.
|
19 |
-
evicted_item = await self.
|
20 |
del evicted_item
|
21 |
-
await self.
|
22 |
|
23 |
-
async def
|
24 |
-
if self.
|
25 |
-
evicted_item = await self.
|
26 |
del evicted_item
|
27 |
-
await self.
|
28 |
|
29 |
-
async def
|
30 |
audio_frames = []
|
31 |
-
if self.
|
32 |
return audio_frames
|
33 |
-
while not self.
|
34 |
-
shared_tensor_ref = await self.
|
35 |
audio_frames.append(shared_tensor_ref)
|
36 |
return audio_frames
|
37 |
|
38 |
-
async def
|
39 |
video_frames = []
|
40 |
-
if self.
|
41 |
return video_frames
|
42 |
-
while not self.
|
43 |
-
shared_tensor_ref = await self.
|
44 |
video_frames.append(shared_tensor_ref)
|
45 |
return video_frames
|
46 |
|
47 |
-
def
|
48 |
-
return self.
|
49 |
|
50 |
-
def
|
51 |
-
return self.
|
52 |
|
53 |
-
async def
|
54 |
-
if self.
|
55 |
return None
|
56 |
-
frame = await self.
|
57 |
return frame
|
58 |
|
59 |
-
async def
|
60 |
-
if self.
|
61 |
return None
|
62 |
frame = None
|
63 |
-
while not self.
|
64 |
-
frame = await self.
|
65 |
return frame
|
|
|
8 |
@ray.remote
|
9 |
class WebRtcAVQueueActor:
|
10 |
def __init__(self):
|
11 |
+
self.audio_input_queue = Queue(maxsize=3000) # Adjust the size as needed
|
12 |
+
self.video_input_queue = Queue(maxsize=10) # Adjust the size as needed
|
13 |
+
self.audio_output_queue = Queue(maxsize=3000) # Adjust the size as needed
|
14 |
+
self.video_output_queue = Queue(maxsize=10) # Adjust the size as needed
|
15 |
|
16 |
|
17 |
+
async def enqueue_video_input_frame(self, shared_tensor_ref):
|
18 |
+
if self.video_input_queue.full():
|
19 |
+
evicted_item = await self.video_input_queue.get_async()
|
20 |
del evicted_item
|
21 |
+
await self.video_input_queue.put_async(shared_tensor_ref)
|
22 |
|
23 |
+
async def enqueue_audio_input_frame(self, shared_buffer_ref):
|
24 |
+
if self.audio_input_queue.full():
|
25 |
+
evicted_item = await self.audio_input_queue.get_async()
|
26 |
del evicted_item
|
27 |
+
await self.audio_input_queue.put_async(shared_buffer_ref)
|
28 |
|
29 |
+
async def get_audio_input_frames(self):
|
30 |
audio_frames = []
|
31 |
+
if self.audio_input_queue.empty():
|
32 |
return audio_frames
|
33 |
+
while not self.audio_input_queue.empty():
|
34 |
+
shared_tensor_ref = await self.audio_input_queue.get_async()
|
35 |
audio_frames.append(shared_tensor_ref)
|
36 |
return audio_frames
|
37 |
|
38 |
+
async def get_video_input_frames(self):
|
39 |
video_frames = []
|
40 |
+
if self.video_input_queue.empty():
|
41 |
return video_frames
|
42 |
+
while not self.video_input_queue.empty():
|
43 |
+
shared_tensor_ref = await self.video_input_queue.get_async()
|
44 |
video_frames.append(shared_tensor_ref)
|
45 |
return video_frames
|
46 |
|
47 |
+
def get_audio_output_queue(self)->Queue:
|
48 |
+
return self.audio_output_queue
|
49 |
|
50 |
+
def get_video_output_queue(self)->Queue:
|
51 |
+
return self.video_output_queue
|
52 |
|
53 |
+
async def get_audio_output_frame(self):
|
54 |
+
if self.audio_output_queue.empty():
|
55 |
return None
|
56 |
+
frame = await self.audio_output_queue.get_async()
|
57 |
return frame
|
58 |
|
59 |
+
async def get_video_output_frame(self):
|
60 |
+
if self.video_output_queue.empty():
|
61 |
return None
|
62 |
frame = None
|
63 |
+
while not self.video_output_queue.empty():
|
64 |
+
frame = await self.video_output_queue.get_async()
|
65 |
return frame
|