Spaces:
Sleeping
Sleeping
import ray | |
from datetime import datetime | |
from agent_state_actor import AgentState | |
class EnvironmentState: | |
def __init__(self, episode, step): | |
self.agent_state = None | |
self.timestamp = datetime.utcnow() | |
self.episode = episode | |
self.step = step | |
self.reward = 0 | |
self.llm_preview = '' | |
self.llm_responses = [] | |
self.tts_raw_chunk_ids = [] | |
def __str__(self): | |
state = ', '.join(f'{k}={v}' for k, v in self.__dict__.items() if k not in {'episode', 'step', 'timestamp', 'reward'}) | |
return f'episode={self.episode}, step={self.step}, timestamp={self.timestamp}, \nreward={self.reward}\nstate=({state})' | |
class EnvironmentStateActor: | |
def __init__(self): | |
self.episode = 0 | |
self.step = 0 | |
self.state = None | |
self.reset_episode() | |
def reset_episode(self): | |
self.episode += 1 | |
self.step = 0 | |
self.state = EnvironmentState(self.episode, self.step) | |
return self.state | |
def begin_next_step(self)->EnvironmentState: | |
previous_state = self.state | |
self.step += 1 | |
self.state = EnvironmentState(self.episode, self.step) | |
return previous_state | |
def add_reward(self, reward): | |
self.state.reward += reward | |
def set_llm_preview(self, llm_preview): | |
self.state.llm_preview = llm_preview | |
def add_llm_response_and_clear_llm_preview(self, llm_response): | |
self.state.llm_responses.append(llm_response) | |
self.state.llm_preview = '' | |
def add_tts_raw_chunk_id(self, chunk_id): | |
self.state.tts_raw_chunk_ids.append(chunk_id) | |
def add_agent_state(self, agent_state:AgentState): | |
self.state.agent_state = agent_state | |
def get_state(self)->EnvironmentState: | |
return self.state |