project_charles / app.py
sohojoe's picture
switch to open_clip
c58cbbc
raw
history blame
10.5 kB
from collections import deque
import os
import threading
import time
import av
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
import pydub
import torch
# import av
# import cv2
from sample_utils.turn import get_ice_servers
import json
from typing import List
from vosk import SetLogLevel, Model, KaldiRecognizer
SetLogLevel(-1) # mutes vosk verbosity
from dotenv import load_dotenv
load_dotenv()
system_one = {
"audio_bit_rate": 16000,
# "audio_bit_rate": 32000,
# "audio_bit_rate": 48000,
# "vision_embeddings_fps": 5,
"vision_embeddings_fps": 2,
}
system_one["video_detection_emotions"] = [
"a happy person",
"the person is happy",
"the person's emotional state is happy",
"a sad person",
"a scared person",
"a disgusted person",
"an angry person",
"a suprised person",
"a bored person",
"an interested person",
"a guilty person",
"an indiffert person",
"a distracted person",
]
# system_one["video_detection_emotions"] = [
# "Happiness",
# "Sadness",
# "Fear",
# "Disgust",
# "Anger",
# "Surprise",
# "Boredom",
# "Interest",
# "Excitement",
# "Guilt",
# "Shame",
# "Relief",
# "Love",
# "Embarrassment",
# "Pride",
# "Envy",
# "Jealousy",
# "Anxiety",
# "Hope",
# "Despair",
# "Frustration",
# "Confusion",
# "Curiosity",
# "Contentment",
# "Indifference",
# "Anticipation",
# "Gratitude",
# "Bitterness"
# ]
system_one["video_detection_engement"] = [
"the person is engaged in the conversation",
"the person is not engaged in the conversation",
"the person is looking at me",
"the person is not looking at me",
"the person is talking to me",
"the person is not talking to me",
"the person is engaged",
"the person is talking",
"the person is listening",
]
system_one["video_detection_present"] = [
"the view from a webcam",
"the view from a webcam we see a person",
# "the view from a webcam. I see a person",
# "the view from a webcam. The person is looking at the camera",
# "i am a webcam",
# "i am a webcam and i see a person",
# "i am a webcam and i see a person. The person is looking at me",
# "a person",
# "a person on a Zoom call",
# "a person on a FaceTime call",
# "a person on a WebCam call",
# "no one",
# " ",
# "multiple people",
# "a group of people",
]
system_one_audio_status = st.empty()
playing = st.checkbox("Playing", value=True)
def load_vosk (model='small'):
# load vosk model
# get path of current file
current_file_path = os.path.abspath(__file__)
current_directory = os.path.dirname(current_file_path)
_path = os.path.join(current_directory, 'models', 'vosk', model)
model_voice = Model(_path)
recognizer = KaldiRecognizer(model_voice, system_one['audio_bit_rate'])
return recognizer
vask = load_vosk()
def handle_audio_frame(frame):
# if self.vosk.AcceptWaveform(data):
pass
def do_work(data: bytearray) -> tuple[str, bool]:
text = ''
speaker_finished = False
if vask.AcceptWaveform(data):
result = vask.Result()
result_json = json.loads(result)
text = result_json['text']
speaker_finished = True
else:
result = vask.PartialResult()
result_json = json.loads(result)
text = result_json['partial']
return text, speaker_finished
audio_frames_deque_lock = threading.Lock()
audio_frames_deque: deque = deque([])
video_frames_deque_lock = threading.Lock()
video_frames_deque: deque = deque([])
async def queued_video_frames_callback(
frames: List[av.AudioFrame],
) -> av.AudioFrame:
with video_frames_deque_lock:
video_frames_deque.extend(frames)
return frames
async def queued_audio_frames_callback(
frames: List[av.AudioFrame],
) -> av.AudioFrame:
with audio_frames_deque_lock:
audio_frames_deque.extend(frames)
# create frames to be returned.
new_frames = []
for frame in frames:
input_array = frame.to_ndarray()
new_frame = av.AudioFrame.from_ndarray(
np.zeros(input_array.shape, dtype=input_array.dtype),
layout=frame.layout.name,
)
new_frame.sample_rate = frame.sample_rate
new_frames.append(new_frame)
# TODO: replace with the audio we want to send to the other side.
return new_frames
system_one_audio_status.write("Initializing CLIP model")
from clip_transform import CLIPTransform
clip_transform = CLIPTransform()
system_one_audio_status.write("Initializing CLIP templates")
embeddings = clip_transform.text_to_embeddings(system_one["video_detection_emotions"])
system_one["video_detection_emotions_embeddings"] = embeddings
embeddings = clip_transform.text_to_embeddings(system_one["video_detection_engement"])
system_one["video_detection_engement_embeddings"] = embeddings
embeddings = clip_transform.text_to_embeddings(system_one["video_detection_present"])
system_one["video_detection_present_embeddings"] = embeddings
system_one_audio_status.write("Initializing webrtc_streamer")
webrtc_ctx = webrtc_streamer(
key="charles",
desired_playing_state=playing,
# audio_receiver_size=4096,
queued_audio_frames_callback=queued_audio_frames_callback,
queued_video_frames_callback=queued_video_frames_callback,
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers()},
async_processing=True,
)
if not webrtc_ctx.state.playing:
exit
system_one_audio_status.write("Initializing streaming")
system_one_audio_output = st.empty()
system_one_video_output = st.empty()
system_one_audio_history = []
system_one_audio_history_output = st.empty()
sound_chunk = pydub.AudioSegment.empty()
current_video_embedding = None
current_video_embedding_timestamp = time.monotonic()
def get_dot_similarities(video_embedding, embeddings, embeddings_labels):
dot_product = torch.mm(embeddings, video_embedding.T)
similarity_image_label = [(float("{:.4f}".format(dot_product[i][0])), embeddings_labels[i]) for i in range(len(embeddings_labels))]
similarity_image_label.sort(reverse=True)
return similarity_image_label
def get_top_3_similarities_as_a_string(video_embedding, embeddings, embeddings_labels):
similarities = get_dot_similarities(video_embedding, embeddings, embeddings_labels)
top_3 = ""
range_len = 3 if len(similarities) > 3 else len(similarities)
for i in range(range_len):
top_3 += f"{similarities[i][1]} ({similarities[i][0]}) "
return top_3
while True:
if webrtc_ctx.state.playing:
# handle video
video_frames = []
with video_frames_deque_lock:
while len(video_frames_deque) > 0:
frame = video_frames_deque.popleft()
video_frames.append(frame)
get_embeddings = False
get_embeddings |= current_video_embedding is None
current_time = time.monotonic()
elapsed_time = current_time - current_video_embedding_timestamp
get_embeddings |= elapsed_time > 1. / system_one['vision_embeddings_fps']
if get_embeddings and len(video_frames) > 0:
current_video_embedding_timestamp = current_time
current_video_embedding = clip_transform.image_to_embeddings(video_frames[-1].to_ndarray())
emotions_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_emotions_embeddings"], system_one["video_detection_emotions"])
engagement_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_engement_embeddings"], system_one["video_detection_engement"])
present_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_present_embeddings"], system_one["video_detection_present"])
# table_content = "**System 1 Video:**\n\n"
table_content = "| System 1 Video | |\n| --- | --- |\n"
table_content += f"| Present | {present_top_3} |\n"
table_content += f"| Emotion | {emotions_top_3} |\n"
table_content += f"| Engagement | {engagement_top_3} |\n"
system_one_video_output.markdown(table_content)
# system_one_video_output.markdown(f"**System 1 Video:** \n [Emotion: {emotions_top_3}], \n [Engagement: {engagement_top_3}], \n [Present: {present_top_3}] ")
# for similarity, image_label in similarity_image_label:
# print (f"{similarity} {image_label}")
# handle audio
audio_frames = []
with audio_frames_deque_lock:
while len(audio_frames_deque) > 0:
frame = audio_frames_deque.popleft()
audio_frames.append(frame)
if len(audio_frames) == 0:
time.sleep(0.1)
system_one_audio_status.write("No frame arrived.")
continue
system_one_audio_status.write("Running. Say something!")
for audio_frame in audio_frames:
sound = pydub.AudioSegment(
data=audio_frame.to_ndarray().tobytes(),
sample_width=audio_frame.format.bytes,
frame_rate=audio_frame.sample_rate,
channels=len(audio_frame.layout.channels),
)
sound = sound.set_channels(1)
sound = sound.set_frame_rate(system_one['audio_bit_rate'])
sound_chunk += sound
if len(sound_chunk) > 0:
buffer = np.array(sound_chunk.get_array_of_samples())
text, speaker_finished = do_work(buffer.tobytes())
system_one_audio_output.markdown(f"**System 1 Audio:** {text}")
if speaker_finished and len(text) > 0:
system_one_audio_history.append(text)
if len(system_one_audio_history) > 10:
system_one_audio_history = system_one_audio_history[-10:]
table_content = "| System 1 Audio History |\n| --- |\n"
table_content += "\n".join([f"| {item} |" for item in reversed(system_one_audio_history)])
system_one_audio_history_output.markdown(table_content)
sound_chunk = pydub.AudioSegment.empty()
else:
system_one_audio_status.write("Stopped.")
break