Spaces:
Runtime error
Runtime error
from typing import List | |
import av | |
import asyncio | |
from collections import deque | |
import threading | |
import numpy as np | |
import ray | |
from webrtc_av_queue_actor import WebRtcAVQueueActor | |
import pydub | |
import torch | |
class StreamlitAVQueue: | |
def __init__(self, audio_bit_rate=16000): | |
self._output_channels = 2 | |
self._audio_bit_rate = audio_bit_rate | |
self._listening = True | |
self._looking = False | |
self._lock = threading.Lock() | |
self.queue_actor = WebRtcAVQueueActor.options( | |
name="WebRtcAVQueueActor", | |
get_if_exists=True, | |
).remote() | |
def set_looking_listening(self, looking, listening: bool): | |
with self._lock: | |
self._looking = looking | |
self._listening = listening | |
async def queued_video_frames_callback( | |
self, | |
frames: List[av.VideoFrame], | |
) -> av.VideoFrame: | |
try: | |
with self._lock: | |
should_look = self._looking | |
if len(frames) > 0 and should_look: | |
for frame in frames: | |
shared_tensor = frame.to_ndarray(format="rgb24") | |
shared_tensor_ref = ray.put(shared_tensor) | |
await self.queue_actor.enqueue_in_video_frame.remote(shared_tensor_ref) | |
# print (f"tesnor len: {len(shared_tensor)}, tensor shape: {shared_tensor.shape}, tensor type:{shared_tensor.dtype} tensor ref: {shared_tensor_ref}") | |
except Exception as e: | |
print (e) | |
return frames | |
async def queued_audio_frames_callback( | |
self, | |
frames: List[av.AudioFrame], | |
) -> av.AudioFrame: | |
try: | |
with self._lock: | |
should_listed = self._listening | |
sound_chunk = pydub.AudioSegment.empty() | |
if len(frames) > 0 and should_listed: | |
for frame in frames: | |
sound = pydub.AudioSegment( | |
data=frame.to_ndarray().tobytes(), | |
sample_width=frame.format.bytes, | |
frame_rate=frame.sample_rate, | |
channels=len(frame.layout.channels), | |
) | |
sound = sound.set_channels(1) | |
sound = sound.set_frame_rate(self._audio_bit_rate) | |
sound_chunk += sound | |
shared_buffer = np.array(sound_chunk.get_array_of_samples()) | |
shared_buffer_ref = ray.put(shared_buffer) | |
await self.queue_actor.enqueue_in_audio_frame.remote(shared_buffer_ref) | |
except Exception as e: | |
print (e) | |
# return empty frames to avoid echo | |
new_frames = [] | |
try: | |
for frame in frames: | |
required_samples = frame.samples | |
# print (f"frame: {frame.format.name}, {frame.layout.name}, {frame.sample_rate}, {frame.samples}") | |
assert frame.format.bytes == 2 | |
assert frame.format.name == 's16' | |
frame_as_bytes = await self.queue_actor.get_out_audio_frame.remote() | |
if frame_as_bytes: | |
# print(f"frame_as_bytes: {len(frame_as_bytes)}") | |
assert len(frame_as_bytes) == frame.samples * frame.format.bytes | |
samples = np.frombuffer(frame_as_bytes, dtype=np.int16) | |
else: | |
samples = np.zeros((required_samples * 2 * 1), dtype=np.int16) | |
if self._output_channels == 2: | |
samples = np.vstack((samples, samples)).reshape((-1,), order='F') | |
samples = samples.reshape(1, -1) | |
layout = 'stereo' if self._output_channels == 2 else 'mono' | |
new_frame = av.AudioFrame.from_ndarray(samples, format='s16', layout=layout) | |
new_frame.sample_rate = frame.sample_rate | |
new_frames.append(new_frame) | |
except Exception as e: | |
print (e) | |
return new_frames | |
async def get_in_audio_frames_async(self) -> List[av.AudioFrame]: | |
shared_buffers = await self.queue_actor.get_in_audio_frames.remote() | |
return shared_buffers | |
async def get_video_frames_async(self) -> List[av.AudioFrame]: | |
shared_tensors = await self.queue_actor.get_in_video_frames.remote() | |
return shared_tensors | |
def get_out_audio_queue(self): | |
return self.queue_actor.get_out_audio_queue.remote() | |
# def get_out_audio_frame(self): | |
# return self.queue_actor.get_out_audio_frame.remote() |