project_charles / streamlit_av_queue.py
sohojoe's picture
refactor: use more of a MDP style structure
149eeaf
raw
history blame
4.62 kB
from typing import List
import av
import asyncio
from collections import deque
import threading
import numpy as np
import ray
from webrtc_av_queue_actor import WebRtcAVQueueActor
import pydub
import torch
class StreamlitAVQueue:
def __init__(self, audio_bit_rate=16000):
self._output_channels = 2
self._audio_bit_rate = audio_bit_rate
self._listening = True
self._looking = True
self._lock = threading.Lock()
self.queue_actor = WebRtcAVQueueActor.options(
name="WebRtcAVQueueActor",
get_if_exists=True,
).remote()
def set_looking_listening(self, looking, listening: bool):
with self._lock:
self._looking = looking
self._listening = listening
async def queued_video_frames_callback(
self,
frames: List[av.VideoFrame],
) -> av.VideoFrame:
try:
with self._lock:
should_look = self._looking
if len(frames) > 0 and should_look:
for frame in frames:
shared_tensor = frame.to_ndarray(format="rgb24")
shared_tensor_ref = ray.put(shared_tensor)
await self.queue_actor.enqueue_in_video_frame.remote(shared_tensor_ref)
# print (f"tesnor len: {len(shared_tensor)}, tensor shape: {shared_tensor.shape}, tensor type:{shared_tensor.dtype} tensor ref: {shared_tensor_ref}")
except Exception as e:
print (e)
return frames
async def queued_audio_frames_callback(
self,
frames: List[av.AudioFrame],
) -> av.AudioFrame:
try:
with self._lock:
should_listed = self._listening
sound_chunk = pydub.AudioSegment.empty()
if len(frames) > 0 and should_listed:
for frame in frames:
sound = pydub.AudioSegment(
data=frame.to_ndarray().tobytes(),
sample_width=frame.format.bytes,
frame_rate=frame.sample_rate,
channels=len(frame.layout.channels),
)
sound = sound.set_channels(1)
sound = sound.set_frame_rate(self._audio_bit_rate)
sound_chunk += sound
shared_buffer = np.array(sound_chunk.get_array_of_samples())
shared_buffer_ref = ray.put(shared_buffer)
await self.queue_actor.enqueue_in_audio_frame.remote(shared_buffer_ref)
except Exception as e:
print (e)
# return empty frames to avoid echo
new_frames = []
try:
for frame in frames:
required_samples = frame.samples
# print (f"frame: {frame.format.name}, {frame.layout.name}, {frame.sample_rate}, {frame.samples}")
assert frame.format.bytes == 2
assert frame.format.name == 's16'
frame_as_bytes = await self.queue_actor.get_out_audio_frame.remote()
if frame_as_bytes:
# print(f"frame_as_bytes: {len(frame_as_bytes)}")
assert len(frame_as_bytes) == frame.samples * frame.format.bytes
samples = np.frombuffer(frame_as_bytes, dtype=np.int16)
else:
samples = np.zeros((required_samples * 2 * 1), dtype=np.int16)
if self._output_channels == 2:
samples = np.vstack((samples, samples)).reshape((-1,), order='F')
samples = samples.reshape(1, -1)
layout = 'stereo' if self._output_channels == 2 else 'mono'
new_frame = av.AudioFrame.from_ndarray(samples, format='s16', layout=layout)
new_frame.sample_rate = frame.sample_rate
new_frames.append(new_frame)
except Exception as e:
print (e)
return new_frames
async def get_in_audio_frames_async(self) -> List[av.AudioFrame]:
shared_buffers = await self.queue_actor.get_in_audio_frames.remote()
return shared_buffers
async def get_video_frames_async(self) -> List[av.AudioFrame]:
shared_tensors = await self.queue_actor.get_in_video_frames.remote()
return shared_tensors
def get_out_audio_queue(self):
return self.queue_actor.get_out_audio_queue.remote()
# def get_out_audio_frame(self):
# return self.queue_actor.get_out_audio_frame.remote()