Spaces:
Sleeping
Sleeping
import ray | |
from ray.util.queue import Queue | |
from ray.actor import ActorHandle | |
import torch | |
import numpy as np | |
import pid_helper | |
class AppInterfaceActor: | |
def __init__(self): | |
self.audio_input_queue = Queue(maxsize=3000) # Adjust the size as needed | |
self.video_input_queue = Queue(maxsize=10) # Adjust the size as needed | |
self.audio_output_queue = Queue(maxsize=50) # Adjust the size as needed | |
self.video_output_queue = Queue(maxsize=10) # Adjust the size as needed | |
self.debug_str = "" | |
self.state = "Initializing" | |
self.charles_app_pids = [] | |
def get_singleton(): | |
return AppInterfaceActor.options( | |
name="AppInterfaceActor", | |
get_if_exists=True, | |
).remote() | |
# functions for UI to enqueue input, dequeue output | |
async def enqueue_video_input_frame(self, shared_tensor_ref): | |
if self.video_input_queue.full(): | |
evicted_item = await self.video_input_queue.get_async() | |
del evicted_item | |
await self.video_input_queue.put_async(shared_tensor_ref) | |
async def enqueue_audio_input_frame(self, shared_buffer_ref): | |
if self.audio_input_queue.full(): | |
evicted_item = await self.audio_input_queue.get_async() | |
del evicted_item | |
await self.audio_input_queue.put_async(shared_buffer_ref) | |
async def dequeue_audio_output_frame_async(self): | |
if self.audio_output_queue.empty(): | |
return None | |
frame = await self.audio_output_queue.get_async() | |
return frame | |
async def dequeue_video_output_frames_async(self): | |
video_frames = [] | |
if self.video_output_queue.empty(): | |
return video_frames | |
while not self.video_output_queue.empty(): | |
shared_tensor = await self.video_output_queue.get_async() | |
video_frames.append(shared_tensor) | |
return video_frames | |
# functions for application to dequeue input, enqueue output | |
def get_audio_output_queue(self)->Queue: | |
return self.audio_output_queue | |
async def enqueue_video_output_frame(self, shared_tensor_ref): | |
if self.video_output_queue.full(): | |
evicted_item = await self.video_output_queue.get_async() | |
del evicted_item | |
await self.video_output_queue.put_async(shared_tensor_ref) | |
async def dequeue_audio_input_frames_async(self): | |
audio_frames = [] | |
if self.audio_input_queue.empty(): | |
return audio_frames | |
while not self.audio_input_queue.empty(): | |
shared_tensor = await self.audio_input_queue.get_async() | |
audio_frames.append(shared_tensor) | |
return audio_frames | |
async def dequeue_video_input_frames_async(self): | |
video_frames = [] | |
if self.video_input_queue.empty(): | |
return video_frames | |
while not self.video_input_queue.empty(): | |
shared_tensor = await self.video_input_queue.get_async() | |
video_frames.append(shared_tensor) | |
return video_frames | |
# pid helpers | |
async def add_charles_app_pid(self, pid:int): | |
self.charles_app_pids.append(pid) | |
async def get_charles_app_pids(self)->[int]: | |
# prune dead pids | |
running_charles_app_pids = [] | |
for pid in self.charles_app_pids: | |
if pid_helper.is_pid_running(pid): | |
running_charles_app_pids.append(pid) | |
self.charles_app_pids = running_charles_app_pids | |
return self.charles_app_pids | |
async def is_charles_app_running(self)->bool: | |
# prune dead pids | |
running_charles_app_pids = [] | |
for pid in self.charles_app_pids: | |
if pid_helper.is_pid_running(pid): | |
running_charles_app_pids.append(pid) | |
self.charles_app_pids = running_charles_app_pids | |
return len(self.charles_app_pids) > 0 | |
# debug helpers | |
async def get_debug_output(self)->str: | |
return self.debug_str | |
async def set_debug_output(self, debug_str:str): | |
self.debug_str = debug_str | |
async def get_state(self)->str: | |
return self.state | |
async def set_state(self, state:str): | |
self.state = state |