FSD50K-Pretrained-SED / data_util /dcase2016task2.py
sohamc10's picture
init
17ef2b0
import json
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
import soundfile as sf
import torch
from intervaltree import IntervalTree
from torch.utils.data import Dataset
class FixCropDataset(Dataset):
"""
Read in a JSON file and return audio and audio filenames
"""
def __init__(self, data: Dict,
audio_dir: Path,
sample_rate: int,
label_fps: int,
label_to_idx: Dict,
nlabels: int):
self.clip_len = 120
self.target_len = 10
self.pieces_per_clip = self.clip_len // self.target_len
self.filenames = list(data.keys())
self.audio_dir = audio_dir
assert self.audio_dir.is_dir(), f"{audio_dir} is not a directory"
self.sample_rate = sample_rate
# all files are 120 seconds long, split them into 12 x 10 second pieces
self.pieces = []
self.labels = []
self.timestamps = []
for filename in self.filenames:
self.pieces += [(filename, i) for i in range(self.pieces_per_clip)]
labels = data[filename]
frame_len = 1000 / label_fps
timestamps = np.arange(label_fps * self.clip_len) * frame_len + 0.5 * frame_len
timestamp_labels = get_labels_for_timestamps(labels, timestamps)
ys = []
for timestamp_label in timestamp_labels:
timestamp_label_idxs = [label_to_idx[str(event)] for event in timestamp_label]
y_timestamp = label_to_binary_vector(timestamp_label_idxs, nlabels)
ys.append(y_timestamp)
ys = torch.stack(ys)
frames_per_clip = ys.size(0) // self.pieces_per_clip
self.labels += [ys[frames_per_clip * i: frames_per_clip * (i + 1)] for i in range(self.pieces_per_clip)]
self.timestamps += [timestamps[frames_per_clip * i: frames_per_clip * (i + 1)] for i in
range(self.pieces_per_clip)]
assert len(self.labels) == len(self.pieces) == len(self.filenames) * self.pieces_per_clip
def __len__(self):
return len(self.pieces)
def __getitem__(self, idx):
filename = self.pieces[idx][0]
piece = self.pieces[idx][1]
audio_path = self.audio_dir.joinpath(filename)
audio, sr = sf.read(str(audio_path), dtype=np.float32)
assert sr == self.sample_rate
start = self.sample_rate * piece * self.target_len
end = start + self.sample_rate * self.target_len
audio = audio[start:end]
return audio, self.labels[idx].transpose(0, 1), filename, self.timestamps[idx]
class RandomCropDataset(Dataset):
"""
Read in a JSON file and return audio and audio filenames
"""
def __init__(self, data: Dict,
audio_dir: Path,
sample_rate: int,
label_fps: int,
label_to_idx: Dict,
nlabels: int):
self.clip_len = 120
self.target_len = 10
self.pieces_per_clip = self.clip_len // self.target_len
self.filenames = list(data.keys())
self.audio_dir = audio_dir
assert self.audio_dir.is_dir(), f"{audio_dir} is not a directory"
self.sample_rate = sample_rate
self.label_fps = label_fps
# all files are 120 seconds long, randomly crop 10 seconds snippets
self.labels = []
self.timestamps = []
for filename in self.filenames:
labels = data[filename]
frame_len = 1000 / label_fps
timestamps = np.arange(label_fps * self.clip_len) * frame_len + 0.5 * frame_len
timestamp_labels = get_labels_for_timestamps(labels, timestamps)
ys = []
for timestamp_label in timestamp_labels:
timestamp_label_idxs = [label_to_idx[str(event)] for event in timestamp_label]
y_timestamp = label_to_binary_vector(timestamp_label_idxs, nlabels)
ys.append(y_timestamp)
ys = torch.stack(ys)
self.labels.append(ys)
self.timestamps.append(timestamps)
assert len(self.labels) == len(self.filenames)
def __len__(self):
return len(self.filenames) * self.clip_len // self.target_len
def __getitem__(self, idx):
idx = idx % len(self.filenames)
filename = self.filenames[idx]
audio_path = self.audio_dir.joinpath(filename)
audio, sr = sf.read(str(audio_path), dtype=np.float32)
assert sr == self.sample_rate
# crop random 10 seconds piece
labels_to_pick = self.target_len * self.label_fps
max_offset = len(self.labels[idx]) - labels_to_pick + 1
offset = torch.randint(max_offset, (1,)).item()
labels = self.labels[idx][offset:offset + labels_to_pick]
scale = self.sample_rate // self.label_fps
audio = audio[offset * scale:offset * scale + labels_to_pick * scale]
timestamps = self.timestamps[idx][offset:offset + labels_to_pick]
return audio, labels.transpose(0, 1), filename, timestamps
def get_training_dataset(
task_path,
sample_rate=16000,
label_fps=25,
wavmix_p=0.0,
random_crop=True
):
task_path = Path(task_path)
label_vocab, nlabels = label_vocab_nlabels(task_path)
label_to_idx = label_vocab_as_dict(label_vocab, key="label", value="idx")
train_fold = task_path.joinpath("train.json")
audio_dir = task_path.joinpath(str(sample_rate), "train")
train_fold_data = json.load(train_fold.open())
if random_crop:
dataset = RandomCropDataset(train_fold_data, audio_dir, sample_rate, label_fps, label_to_idx, nlabels)
else:
dataset = FixCropDataset(train_fold_data, audio_dir, sample_rate, label_fps, label_to_idx, nlabels)
if wavmix_p > 0:
dataset = MixupDataset(dataset, rate=wavmix_p)
return dataset
def get_validation_dataset(
task_path,
sample_rate=16000,
label_fps=25,
):
task_path = Path(task_path)
label_vocab, nlabels = label_vocab_nlabels(task_path)
label_to_idx = label_vocab_as_dict(label_vocab, key="label", value="idx")
valid_fold = task_path.joinpath("valid.json")
audio_dir = task_path.joinpath(str(sample_rate), "valid")
valid_fold_data = json.load(valid_fold.open())
dataset = FixCropDataset(valid_fold_data, audio_dir, sample_rate, label_fps, label_to_idx, nlabels)
return dataset
def get_test_dataset(
task_path,
sample_rate=16000,
label_fps=25,
):
task_path = Path(task_path)
label_vocab, nlabels = label_vocab_nlabels(task_path)
label_to_idx = label_vocab_as_dict(label_vocab, key="label", value="idx")
test_fold = task_path.joinpath("test.json")
audio_dir = task_path.joinpath(str(sample_rate), "test")
test_fold_data = json.load(test_fold.open())
dataset = FixCropDataset(test_fold_data, audio_dir, sample_rate, label_fps, label_to_idx, nlabels)
return dataset
def get_labels_for_timestamps(labels: List, timestamps: np.ndarray) -> List:
# A list of labels present at each timestamp
tree = IntervalTree()
# Add all events to the label tree
for event in labels:
# We add 0.0001 so that the end also includes the event
tree.addi(event["start"], event["end"] + 0.0001, event["label"])
timestamp_labels = []
# Update the binary vector of labels with intervals for each timestamp
for j, t in enumerate(timestamps):
interval_labels: List[str] = [interval.data for interval in tree[t]]
timestamp_labels.append(interval_labels)
# If we want to store the timestamp too
# labels_for_sound.append([float(t), interval_labels])
assert len(timestamp_labels) == len(timestamps)
return timestamp_labels
def label_vocab_nlabels(task_path: Path) -> Tuple[pd.DataFrame, int]:
label_vocab = pd.read_csv(task_path.joinpath("labelvocabulary.csv"))
nlabels = len(label_vocab)
assert nlabels == label_vocab["idx"].max() + 1
return (label_vocab, nlabels)
def label_vocab_as_dict(df: pd.DataFrame, key: str, value: str) -> Dict:
"""
Returns a dictionary of the label vocabulary mapping the label column to
the idx column. key sets whether the label or idx is the key in the dict. The
other column will be the value.
"""
if key == "label":
# Make sure the key is a string
df["label"] = df["label"].astype(str)
value = "idx"
else:
assert key == "idx", "key argument must be either 'label' or 'idx'"
value = "label"
return df.set_index(key).to_dict()[value]
def label_to_binary_vector(label: List, num_labels: int) -> torch.Tensor:
"""
Converts a list of labels into a binary vector
Args:
label: list of integer labels
num_labels: total number of labels
Returns:
A float Tensor that is multi-hot binary vector
"""
# Lame special case for multilabel with no labels
if len(label) == 0:
# BCEWithLogitsLoss wants float not long targets
binary_labels = torch.zeros((num_labels,), dtype=torch.float)
else:
binary_labels = torch.zeros((num_labels,)).scatter(0, torch.tensor(label), 1.0)
# Validate the binary vector we just created
assert set(torch.where(binary_labels == 1.0)[0].numpy()) == set(label)
return binary_labels
class MixupDataset(Dataset):
""" Mixing Up wave forms
"""
def __init__(self, dataset, beta=0.2, rate=0.5):
self.beta = beta
self.rate = rate
self.dataset = dataset
print(f"Mixing up waveforms from dataset of len {len(dataset)}")
def __getitem__(self, index):
if torch.rand(1) < self.rate:
batch1 = self.dataset[index]
idx2 = torch.randint(len(self.dataset), (1,)).item()
batch2 = self.dataset[idx2]
x1, x2 = batch1[0], batch2[0]
y1, y2 = batch1[1], batch2[1]
l = np.random.beta(self.beta, self.beta)
l = max(l, 1. - l)
x1 = x1 - x1.mean()
x2 = x2 - x2.mean()
x = (x1 * l + x2 * (1. - l))
x = x - x.mean()
y = (y1 * l + y2 * (1. - l))
return x, y, batch1[2], batch1[3]
return self.dataset[index]
def __len__(self):
return len(self.dataset)