|  | from sklearn.linear_model import LinearRegression | 
					
						
						|  | from sklearn.model_selection import train_test_split | 
					
						
						|  | from sklearn.metrics import mean_squared_error | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | X = np.array([[1000], [1500], [2000], [2500], [3000], [3500], [4000], [4500], [5000], [5500]]) | 
					
						
						|  | y = np.array([50000, 75000, 100000, 125000, 150000, 175000, 200000, 225000, 250000, 275000]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model = LinearRegression() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model.fit(X_train, y_train) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | y_pred = model.predict(X_test) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mse = mean_squared_error(y_test, y_pred) | 
					
						
						|  | coef = model.coef_[0] | 
					
						
						|  | intercept = model.intercept_ | 
					
						
						|  | score = model.score(X_test, y_test) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def predict(sqft): | 
					
						
						|  | return (model.predict([[sqft]])[0]).round(2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model_details(): | 
					
						
						|  | return {"mse": mse, "coef": coef, "intercept": intercept, "score": score} | 
					
						
						|  |  |