Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- pages/fraud.py +333 -0
- pages/home.py +71 -0
- pages/project_details.py +91 -0
pages/fraud.py
ADDED
|
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pages/fraud.py
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import joblib
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
import base64
|
| 8 |
+
|
| 9 |
+
# Page title
|
| 10 |
+
st.title("Fraud Detection")
|
| 11 |
+
|
| 12 |
+
# Header with an image
|
| 13 |
+
st.image(
|
| 14 |
+
"https://images.unsplash.com/photo-1611974789855-9c2a0a7236a3?ixlib=rb-1.2.1&auto=format&fit=crop&w=1950&q=80",
|
| 15 |
+
use_column_width=True,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Load pre-trained model
|
| 20 |
+
@st.cache_resource
|
| 21 |
+
def load_model():
|
| 22 |
+
with open("model.pkl", "rb") as file:
|
| 23 |
+
model = joblib.load(file)
|
| 24 |
+
return model
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
model = load_model()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Function to visualize predictions
|
| 31 |
+
def visualize_predictions(data):
|
| 32 |
+
# Create a tab layout for different visualizations
|
| 33 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(
|
| 34 |
+
[
|
| 35 |
+
"Fraud Distribution",
|
| 36 |
+
"Transaction Types",
|
| 37 |
+
"Amount Analysis",
|
| 38 |
+
"Balance Impact",
|
| 39 |
+
"Time Patterns",
|
| 40 |
+
]
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
with tab1:
|
| 44 |
+
st.subheader("Fraud vs. Non-Fraud Distribution")
|
| 45 |
+
|
| 46 |
+
# Pie chart of fraud vs non-fraud
|
| 47 |
+
fraud_counts = data["prediction_label"].value_counts().reset_index()
|
| 48 |
+
fraud_counts.columns = ["Category", "Count"]
|
| 49 |
+
|
| 50 |
+
fig_pie = px.pie(
|
| 51 |
+
fraud_counts,
|
| 52 |
+
values="Count",
|
| 53 |
+
names="Category",
|
| 54 |
+
title="Distribution of Fraud vs Non-Fraud Transactions",
|
| 55 |
+
color_discrete_sequence=px.colors.sequential.RdBu,
|
| 56 |
+
hole=0.3,
|
| 57 |
+
)
|
| 58 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
| 59 |
+
|
| 60 |
+
# Add percentage information
|
| 61 |
+
total = fraud_counts["Count"].sum()
|
| 62 |
+
fraud_percent = round(
|
| 63 |
+
(
|
| 64 |
+
fraud_counts[fraud_counts["Category"] == "Fraud Transactions"][
|
| 65 |
+
"Count"
|
| 66 |
+
].sum()
|
| 67 |
+
/ total
|
| 68 |
+
)
|
| 69 |
+
* 100,
|
| 70 |
+
2,
|
| 71 |
+
)
|
| 72 |
+
st.info(f"Percentage of fraudulent transactions: {fraud_percent}%")
|
| 73 |
+
|
| 74 |
+
with tab2:
|
| 75 |
+
st.subheader("Transaction Types Analysis")
|
| 76 |
+
|
| 77 |
+
# Bar chart of transaction types with fraud distribution
|
| 78 |
+
type_fraud = pd.crosstab(data["type"], data["prediction_label"])
|
| 79 |
+
|
| 80 |
+
fig_bar = go.Figure()
|
| 81 |
+
for col in type_fraud.columns:
|
| 82 |
+
fig_bar.add_trace(
|
| 83 |
+
go.Bar(
|
| 84 |
+
x=type_fraud.index,
|
| 85 |
+
y=type_fraud[col],
|
| 86 |
+
name=col,
|
| 87 |
+
marker_color="red" if col == "Fraud Transactions" else "blue",
|
| 88 |
+
)
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
fig_bar.update_layout(
|
| 92 |
+
title="Fraud Distribution by Transaction Type",
|
| 93 |
+
xaxis_title="Transaction Type",
|
| 94 |
+
yaxis_title="Count",
|
| 95 |
+
barmode="group",
|
| 96 |
+
)
|
| 97 |
+
st.plotly_chart(fig_bar, use_container_width=True)
|
| 98 |
+
|
| 99 |
+
# Calculate fraud percentage by transaction type
|
| 100 |
+
type_fraud_pct = pd.DataFrame()
|
| 101 |
+
for col in type_fraud.columns:
|
| 102 |
+
type_fraud_pct[col + " %"] = round(
|
| 103 |
+
type_fraud[col] / type_fraud.sum(axis=1) * 100, 2
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
st.dataframe(
|
| 107 |
+
type_fraud_pct.reset_index().rename(columns={"index": "Transaction Type"})
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
with tab3:
|
| 111 |
+
st.subheader("Transaction Amount Analysis")
|
| 112 |
+
|
| 113 |
+
# Histogram of transaction amounts by fraud status
|
| 114 |
+
fig_hist = px.histogram(
|
| 115 |
+
data,
|
| 116 |
+
x="amount",
|
| 117 |
+
color="prediction_label",
|
| 118 |
+
marginal="box",
|
| 119 |
+
nbins=50,
|
| 120 |
+
opacity=0.7,
|
| 121 |
+
title="Distribution of Transaction Amounts",
|
| 122 |
+
color_discrete_map={
|
| 123 |
+
"Fraud Transactions": "red",
|
| 124 |
+
"Not Fraud Transactions": "blue",
|
| 125 |
+
},
|
| 126 |
+
)
|
| 127 |
+
fig_hist.update_layout(xaxis_title="Amount", yaxis_title="Count")
|
| 128 |
+
st.plotly_chart(fig_hist, use_container_width=True)
|
| 129 |
+
|
| 130 |
+
# Summary statistics for amounts
|
| 131 |
+
st.subheader("Amount Statistics by Fraud Status")
|
| 132 |
+
amount_stats = data.groupby("prediction_label")["amount"].describe()
|
| 133 |
+
st.dataframe(amount_stats)
|
| 134 |
+
|
| 135 |
+
with tab4:
|
| 136 |
+
st.subheader("Balance Impact Analysis")
|
| 137 |
+
|
| 138 |
+
# Calculate balance change
|
| 139 |
+
data["orig_balance_change"] = data["newbalanceOrig"] - data["oldbalanceOrg"]
|
| 140 |
+
data["dest_balance_change"] = data["newbalanceDest"] - data["oldbalanceDest"]
|
| 141 |
+
|
| 142 |
+
# Create a figure for balance changes
|
| 143 |
+
balance_df = pd.melt(
|
| 144 |
+
data[["prediction_label", "orig_balance_change", "dest_balance_change"]],
|
| 145 |
+
id_vars=["prediction_label"],
|
| 146 |
+
value_vars=["orig_balance_change", "dest_balance_change"],
|
| 147 |
+
var_name="Account",
|
| 148 |
+
value_name="Balance Change",
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
balance_df["Account"] = balance_df["Account"].map(
|
| 152 |
+
{
|
| 153 |
+
"orig_balance_change": "Origin Account",
|
| 154 |
+
"dest_balance_change": "Destination Account",
|
| 155 |
+
}
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
fig_box = px.box(
|
| 159 |
+
balance_df,
|
| 160 |
+
x="Account",
|
| 161 |
+
y="Balance Change",
|
| 162 |
+
color="prediction_label",
|
| 163 |
+
title="Balance Changes in Origin vs Destination Accounts",
|
| 164 |
+
color_discrete_map={
|
| 165 |
+
"Fraud Transactions": "red",
|
| 166 |
+
"Not Fraud Transactions": "blue",
|
| 167 |
+
},
|
| 168 |
+
)
|
| 169 |
+
st.plotly_chart(fig_box, use_container_width=True)
|
| 170 |
+
|
| 171 |
+
with tab5:
|
| 172 |
+
st.subheader("Time Patterns")
|
| 173 |
+
|
| 174 |
+
# Time series of transactions by step (time)
|
| 175 |
+
if "step" in data.columns:
|
| 176 |
+
step_counts = (
|
| 177 |
+
data.groupby(["step", "prediction_label"])
|
| 178 |
+
.size()
|
| 179 |
+
.reset_index(name="count")
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
fig_line = px.line(
|
| 183 |
+
step_counts,
|
| 184 |
+
x="step",
|
| 185 |
+
y="count",
|
| 186 |
+
color="prediction_label",
|
| 187 |
+
title="Transaction Frequency Over Time",
|
| 188 |
+
color_discrete_map={
|
| 189 |
+
"Fraud Transactions": "red",
|
| 190 |
+
"Not Fraud Transactions": "blue",
|
| 191 |
+
},
|
| 192 |
+
)
|
| 193 |
+
fig_line.update_layout(
|
| 194 |
+
xaxis_title="Time Step", yaxis_title="Number of Transactions"
|
| 195 |
+
)
|
| 196 |
+
st.plotly_chart(fig_line, use_container_width=True)
|
| 197 |
+
|
| 198 |
+
# Heatmap of fraud probability by time
|
| 199 |
+
if len(data["step"].unique()) > 1:
|
| 200 |
+
pivot_data = pd.pivot_table(
|
| 201 |
+
data,
|
| 202 |
+
values="prediction",
|
| 203 |
+
index="step",
|
| 204 |
+
columns="type",
|
| 205 |
+
aggfunc="mean",
|
| 206 |
+
).fillna(0)
|
| 207 |
+
|
| 208 |
+
fig_heatmap = px.imshow(
|
| 209 |
+
pivot_data,
|
| 210 |
+
title="Fraud Probability Heatmap by Transaction Type and Time",
|
| 211 |
+
color_continuous_scale="Reds",
|
| 212 |
+
labels=dict(
|
| 213 |
+
x="Transaction Type", y="Time Step", color="Fraud Probability"
|
| 214 |
+
),
|
| 215 |
+
)
|
| 216 |
+
st.plotly_chart(fig_heatmap, use_container_width=True)
|
| 217 |
+
else:
|
| 218 |
+
st.write("Time step data is not available for time pattern analysis.")
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# Function to add color formatting to the DataFrame
|
| 222 |
+
def color_fraud(val):
|
| 223 |
+
color = "red" if val == "Fraud Transactions" else "green"
|
| 224 |
+
return f"background-color: {color}"
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# Function to create a download link for the CSV file
|
| 228 |
+
def get_csv_download_link(df):
|
| 229 |
+
csv = df.to_csv(index=False)
|
| 230 |
+
b64 = base64.b64encode(csv.encode()).decode() # Convert to base64
|
| 231 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="fraud_predictions.csv">Download CSV File</a>'
|
| 232 |
+
return href
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# Transaction Data Input section
|
| 236 |
+
st.header("Transaction Data Input")
|
| 237 |
+
st.write("Choose to upload a CSV file or manually input transaction data.")
|
| 238 |
+
|
| 239 |
+
# Option to choose upload or manual input
|
| 240 |
+
option = st.radio("Select input method:", ("Upload CSV", "Manual Input"))
|
| 241 |
+
|
| 242 |
+
if option == "Upload CSV":
|
| 243 |
+
# Option to upload a CSV file
|
| 244 |
+
file_upload = st.file_uploader("Upload CSV", type=["csv"])
|
| 245 |
+
if file_upload is not None:
|
| 246 |
+
data = pd.read_csv(file_upload)
|
| 247 |
+
st.write("Uploaded Data Preview:")
|
| 248 |
+
st.write(data.head())
|
| 249 |
+
|
| 250 |
+
if st.button("Submit CSV"):
|
| 251 |
+
# Predict using the uploaded CSV data
|
| 252 |
+
predictions = model.predict(data)
|
| 253 |
+
data["prediction"] = predictions
|
| 254 |
+
data["prediction_label"] = data["prediction"].map(
|
| 255 |
+
{1: "Fraud Transactions", 0: "Not Fraud Transactions"}
|
| 256 |
+
)
|
| 257 |
+
st.write("Predictions:")
|
| 258 |
+
|
| 259 |
+
# Apply color formatting to the DataFrame
|
| 260 |
+
styled_data = data[
|
| 261 |
+
["type", "nameOrig", "nameDest", "prediction_label"]
|
| 262 |
+
].style.applymap(color_fraud, subset=["prediction_label"])
|
| 263 |
+
st.dataframe(styled_data)
|
| 264 |
+
|
| 265 |
+
# Add a download button for the predicted CSV
|
| 266 |
+
st.markdown(get_csv_download_link(data), unsafe_allow_html=True)
|
| 267 |
+
|
| 268 |
+
# Visualizations for CSV data
|
| 269 |
+
st.header("Visualization of Prediction Results")
|
| 270 |
+
visualize_predictions(data)
|
| 271 |
+
|
| 272 |
+
elif option == "Manual Input":
|
| 273 |
+
st.write("Manually input data:")
|
| 274 |
+
# Manual input of data
|
| 275 |
+
step = st.number_input("Step", min_value=0)
|
| 276 |
+
type = st.selectbox("Type", ["TRANSFER", "PAYMENT", "DEBIT", "CASH_OUT", "CASH_IN"])
|
| 277 |
+
amount = st.number_input("Amount", min_value=0.0)
|
| 278 |
+
nameOrig = st.text_input("Origin Account Name")
|
| 279 |
+
oldbalanceOrg = st.number_input("Old Balance (Origin)", min_value=0.0)
|
| 280 |
+
newbalanceOrig = st.number_input("New Balance (Origin)", min_value=0.0)
|
| 281 |
+
nameDest = st.text_input("Destination Account Name")
|
| 282 |
+
oldbalanceDest = st.number_input("Old Balance (Destination)", min_value=0.0)
|
| 283 |
+
newbalanceDest = st.number_input("New Balance (Destination)", min_value=0.0)
|
| 284 |
+
isFlaggedFraud = st.selectbox("Is Flagged Fraud?", [0, 1])
|
| 285 |
+
|
| 286 |
+
if st.button("Submit"):
|
| 287 |
+
# Create a DataFrame from manual input
|
| 288 |
+
manual_data = pd.DataFrame(
|
| 289 |
+
{
|
| 290 |
+
"step": [step],
|
| 291 |
+
"type": [type],
|
| 292 |
+
"amount": [amount],
|
| 293 |
+
"nameOrig": [nameOrig],
|
| 294 |
+
"oldbalanceOrg": [oldbalanceOrg],
|
| 295 |
+
"newbalanceOrig": [newbalanceOrig],
|
| 296 |
+
"nameDest": [nameDest],
|
| 297 |
+
"oldbalanceDest": [oldbalanceDest],
|
| 298 |
+
"newbalanceDest": [newbalanceDest],
|
| 299 |
+
"isFlaggedFraud": [isFlaggedFraud],
|
| 300 |
+
}
|
| 301 |
+
)
|
| 302 |
+
st.write("Manual Input Data:")
|
| 303 |
+
st.write(manual_data)
|
| 304 |
+
|
| 305 |
+
# Predict using the manually input data
|
| 306 |
+
manual_predictions = model.predict(manual_data)
|
| 307 |
+
manual_data["prediction"] = manual_predictions
|
| 308 |
+
manual_data["prediction_label"] = manual_data["prediction"].map(
|
| 309 |
+
{1: "Fraud Transactions", 0: "Not Fraud Transactions"}
|
| 310 |
+
)
|
| 311 |
+
st.write("Predictions:")
|
| 312 |
+
|
| 313 |
+
# Apply color formatting to the DataFrame
|
| 314 |
+
styled_manual_data = manual_data[
|
| 315 |
+
["type", "nameOrig", "nameDest", "prediction_label"]
|
| 316 |
+
].style.applymap(color_fraud, subset=["prediction_label"])
|
| 317 |
+
st.dataframe(styled_manual_data)
|
| 318 |
+
|
| 319 |
+
# For manual input, we'll just show the prediction result
|
| 320 |
+
st.header("Prediction Result")
|
| 321 |
+
result = manual_data["prediction_label"].iloc[0]
|
| 322 |
+
st.markdown(
|
| 323 |
+
f"<h2 style='text-align: center; color: {'red' if result == 'Fraud Transactions' else 'green'};'>{result}</h2>",
|
| 324 |
+
unsafe_allow_html=True,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Footer
|
| 328 |
+
st.markdown("---")
|
| 329 |
+
st.write(
|
| 330 |
+
"""
|
| 331 |
+
© 2024 Financial Fraud Detection System. All rights reserved.
|
| 332 |
+
"""
|
| 333 |
+
)
|
pages/home.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pages/home.py
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
# Page title
|
| 5 |
+
st.title("Welcome to the Financial Fraud Detection System")
|
| 6 |
+
|
| 7 |
+
# Header with an image
|
| 8 |
+
st.image("https://images.unsplash.com/photo-1611974789855-9c2a0a7236a3?ixlib=rb-1.2.1&auto=format&fit=crop&w=1950&q=80", use_column_width=True)
|
| 9 |
+
|
| 10 |
+
# Introduction section
|
| 11 |
+
st.header("Introduction")
|
| 12 |
+
st.write("""
|
| 13 |
+
In the digital age, financial fraud has become a significant concern for individuals, businesses, and financial institutions.
|
| 14 |
+
With the increasing volume of online transactions, the need for robust fraud detection systems has never been more critical.
|
| 15 |
+
Our **Financial Fraud Detection System** leverages advanced machine learning techniques to identify and prevent fraudulent activities in real-time.
|
| 16 |
+
""")
|
| 17 |
+
|
| 18 |
+
# Key features section
|
| 19 |
+
st.header("Key Features")
|
| 20 |
+
col1, col2, col3 = st.columns(3)
|
| 21 |
+
|
| 22 |
+
with col1:
|
| 23 |
+
st.subheader("Real-Time Detection")
|
| 24 |
+
st.write("""
|
| 25 |
+
Our system processes transactions in real-time, providing instant fraud detection and alerting.
|
| 26 |
+
This ensures that fraudulent activities are identified and mitigated as soon as they occur.
|
| 27 |
+
""")
|
| 28 |
+
|
| 29 |
+
with col2:
|
| 30 |
+
st.subheader("High Accuracy")
|
| 31 |
+
st.write("""
|
| 32 |
+
Utilizing state-of-the-art machine learning algorithms, our system achieves an accuracy rate of over 95%,
|
| 33 |
+
minimizing false positives and ensuring reliable fraud detection.
|
| 34 |
+
""")
|
| 35 |
+
|
| 36 |
+
with col3:
|
| 37 |
+
st.subheader("User-Friendly Interface")
|
| 38 |
+
st.write("""
|
| 39 |
+
The system features an intuitive web interface built with Streamlit, allowing users to easily upload transaction data,
|
| 40 |
+
view fraud predictions, and analyze results with detailed visualizations.
|
| 41 |
+
""")
|
| 42 |
+
|
| 43 |
+
# How it works section
|
| 44 |
+
st.header("How It Works")
|
| 45 |
+
st.write("""
|
| 46 |
+
Our Financial Fraud Detection System is built on the **XGBoost** algorithm, a powerful machine learning model known for its efficiency and accuracy in handling tabular data.
|
| 47 |
+
The system processes both historical and real-time transaction data, identifying patterns and anomalies that indicate fraudulent behavior.
|
| 48 |
+
""")
|
| 49 |
+
|
| 50 |
+
# Steps in the process
|
| 51 |
+
st.subheader("Process Overview")
|
| 52 |
+
st.write("""
|
| 53 |
+
1. **Data Collection**: Transaction data is collected from various sources, including banks, e-commerce platforms, and payment gateways.
|
| 54 |
+
2. **Data Preprocessing**: The data is cleaned, normalized, and transformed to ensure it is suitable for analysis.
|
| 55 |
+
3. **Model Training**: The XGBoost model is trained on a large dataset of labeled transactions, learning to distinguish between legitimate and fraudulent activities.
|
| 56 |
+
4. **Real-Time Detection**: The trained model is deployed to analyze incoming transactions in real-time, flagging potential fraud for further investigation.
|
| 57 |
+
5. **Visualization & Reporting**: Users can view detailed reports and visualizations of fraud predictions, enabling informed decision-making.
|
| 58 |
+
""")
|
| 59 |
+
|
| 60 |
+
# Call to action
|
| 61 |
+
st.header("Get Started")
|
| 62 |
+
st.write("""
|
| 63 |
+
Ready to experience the power of our Financial Fraud Detection System?
|
| 64 |
+
Navigate to the **Fraud Detection** page to upload your transaction data and start detecting fraud today!
|
| 65 |
+
""")
|
| 66 |
+
|
| 67 |
+
# Footer
|
| 68 |
+
st.markdown("---")
|
| 69 |
+
st.write("""
|
| 70 |
+
© 2024 Financial Fraud Detection System. All rights reserved.
|
| 71 |
+
""")
|
pages/project_details.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pages/project_details.py
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
# Page title
|
| 5 |
+
st.title("Project Details")
|
| 6 |
+
|
| 7 |
+
# Header with an image
|
| 8 |
+
st.image("https://images.unsplash.com/photo-1454165804606-c3d57bc86b40?ixlib=rb-1.2.1&auto=format&fit=crop&w=1950&q=80", use_column_width=True)
|
| 9 |
+
|
| 10 |
+
# Introduction section
|
| 11 |
+
st.header("Introduction")
|
| 12 |
+
st.write("""
|
| 13 |
+
The **Financial Fraud Detection System** is an advanced solution designed to identify and prevent fraudulent transactions in real-time.
|
| 14 |
+
With the increasing volume of online transactions, the need for a robust and scalable fraud detection system has become critical.
|
| 15 |
+
Our project leverages state-of-the-art machine learning techniques to provide accurate and efficient fraud detection, helping financial institutions and businesses minimize losses and enhance security.
|
| 16 |
+
""")
|
| 17 |
+
|
| 18 |
+
# Objectives section
|
| 19 |
+
st.header("Project Objectives")
|
| 20 |
+
st.write("""
|
| 21 |
+
The primary objectives of the Financial Fraud Detection System are:
|
| 22 |
+
""")
|
| 23 |
+
st.markdown("""
|
| 24 |
+
- **Real-Time Fraud Detection**: Detect fraudulent transactions as they occur, enabling immediate intervention.
|
| 25 |
+
- **High Accuracy**: Achieve a fraud detection accuracy rate of over 95% to minimize false positives and false negatives.
|
| 26 |
+
- **Scalability**: Handle large volumes of transactions efficiently, ensuring the system can scale with growing demand.
|
| 27 |
+
- **User-Friendly Interface**: Provide an intuitive and easy-to-use interface for financial analysts and decision-makers.
|
| 28 |
+
- **Continuous Learning**: Enable the system to adapt to new fraud patterns by continuously retraining the model with new data.
|
| 29 |
+
""")
|
| 30 |
+
|
| 31 |
+
# Methodology section
|
| 32 |
+
st.header("Methodology")
|
| 33 |
+
st.write("""
|
| 34 |
+
Our methodology for developing the Financial Fraud Detection System involves the following steps:
|
| 35 |
+
""")
|
| 36 |
+
st.markdown("""
|
| 37 |
+
1. **Data Collection**: Gather transaction data from various sources, including banks, e-commerce platforms, and payment gateways.
|
| 38 |
+
2. **Data Preprocessing**: Clean, normalize, and transform the data to ensure it is suitable for analysis.
|
| 39 |
+
3. **Feature Engineering**: Extract relevant features from the transaction data, such as transaction amount, frequency, and user behavior.
|
| 40 |
+
4. **Model Training**: Train the XGBoost machine learning model on a labeled dataset of transactions to distinguish between legitimate and fraudulent activities.
|
| 41 |
+
5. **Model Evaluation**: Evaluate the model's performance using metrics such as accuracy, precision, recall, and F1-score.
|
| 42 |
+
6. **Deployment**: Deploy the trained model in a production environment, enabling real-time fraud detection.
|
| 43 |
+
7. **Monitoring & Retraining**: Continuously monitor the system's performance and retrain the model with new data to adapt to evolving fraud patterns.
|
| 44 |
+
""")
|
| 45 |
+
|
| 46 |
+
# Technology Stack section
|
| 47 |
+
st.header("Technology Stack")
|
| 48 |
+
st.write("""
|
| 49 |
+
The Financial Fraud Detection System is built using the following technologies:
|
| 50 |
+
""")
|
| 51 |
+
st.markdown("""
|
| 52 |
+
- **Programming Language**: Python
|
| 53 |
+
- **Machine Learning Framework**: Scikit-learn, XGBoost
|
| 54 |
+
- **Data Processing**: Pandas, NumPy
|
| 55 |
+
- **Visualization**: Matplotlib, Seaborn, Plotly
|
| 56 |
+
- **Web Interface**: Streamlit
|
| 57 |
+
- **Model Serialization**: Joblib
|
| 58 |
+
- **Version Control**: Git
|
| 59 |
+
""")
|
| 60 |
+
|
| 61 |
+
# Key Features section
|
| 62 |
+
st.header("Key Features")
|
| 63 |
+
st.write("""
|
| 64 |
+
The Financial Fraud Detection System offers the following key features:
|
| 65 |
+
""")
|
| 66 |
+
st.markdown("""
|
| 67 |
+
- **Real-Time Processing**: Analyze transactions in real-time to detect fraud as it happens.
|
| 68 |
+
- **Batch Processing**: Upload and analyze bulk transaction data in CSV format.
|
| 69 |
+
- **Interactive Dashboard**: Visualize fraud detection results with interactive charts and graphs.
|
| 70 |
+
- **Fraud Probability Scores**: Provide a fraud risk score for each transaction, helping analysts prioritize investigations.
|
| 71 |
+
- **Decision Explainability**: Offer insights into why a transaction was flagged as fraudulent, enhancing transparency.
|
| 72 |
+
- **Scalable Architecture**: Designed to handle high volumes of transactions without performance degradation.
|
| 73 |
+
""")
|
| 74 |
+
|
| 75 |
+
# Future Enhancements section
|
| 76 |
+
st.header("Future Enhancements")
|
| 77 |
+
st.write("""
|
| 78 |
+
We are continuously working to improve the Financial Fraud Detection System. Some of the planned enhancements include:
|
| 79 |
+
""")
|
| 80 |
+
st.markdown("""
|
| 81 |
+
- **Integration with Banking Systems**: Enable seamless integration with existing banking and payment systems for live fraud detection.
|
| 82 |
+
- **Advanced Feature Engineering**: Incorporate additional features such as behavioral analytics and device tracking to improve detection accuracy.
|
| 83 |
+
- **Automated Model Retraining**: Implement an automated pipeline for retraining the model with new data to adapt to evolving fraud patterns.
|
| 84 |
+
- **Mobile-Friendly Interface**: Develop a mobile-friendly version of the web interface for on-the-go fraud detection monitoring.
|
| 85 |
+
""")
|
| 86 |
+
|
| 87 |
+
# Footer
|
| 88 |
+
st.markdown("---")
|
| 89 |
+
st.write("""
|
| 90 |
+
© 2024 Financial Fraud Detection System. All rights reserved.
|
| 91 |
+
""")
|