Spaces:
Build error
Build error
Upload 9 files
Browse files- README.md +6 -7
- abc.md +87 -0
- app.py +108 -0
- chat.py +223 -0
- chatbot_model.pth +3 -0
- product_intents.json +109 -0
- requirements.txt +6 -0
- reviews_data.json +44 -0
- train.py +242 -0
README.md
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title: Review
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
-
sdk_version: 1.42.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
|
| 11 |
-
short_description: A streamlit application for taking review and analysis.
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Chatbot Review
|
| 3 |
+
emoji: π₯
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: streamlit
|
| 7 |
+
sdk_version: 1.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
short_description: A chatbot for taking review
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
abc.md
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# π€ **Chatbot Review**
|
| 2 |
+
|
| 3 |
+
## π **Overview**
|
| 4 |
+
|
| 5 |
+
Chatbot Review is a **Streamlit**-based application designed to provide product reviews and inquiries. Utilizing **Natural Language Processing (NLP)**, this app allows users to ask questions about products, submit reviews, and analyze customer sentiments. Built with **Python**, it integrates various libraries for efficient data handling and interactive visualizations.
|
| 6 |
+
|
| 7 |
+
## π **Features**
|
| 8 |
+
|
| 9 |
+
- π **Product Review**: Collect and display customer reviews for each product.
|
| 10 |
+
- π² **Price Inquiry**: Find pricing details for different products.
|
| 11 |
+
- βοΈ **Submit Review**: Share your own reviews and ratings.
|
| 12 |
+
- π¬ **Review Analysis**: Analyze customer feedback to determine the overall product performance with graphical representation.
|
| 13 |
+
|
| 14 |
+
## ποΈ **Project Structure**
|
| 15 |
+
|
| 16 |
+
```plaintext
|
| 17 |
+
Chatbot-Review/
|
| 18 |
+
β
|
| 19 |
+
βββ app.py # Main app file to run the Streamlit application
|
| 20 |
+
βββ chat.py # File handling the chatbot interactions and user queries
|
| 21 |
+
βββ chat_model.pth # Pre-trained model for chatbot's response generation
|
| 22 |
+
βββ requirements.txt # Lists dependencies required to run the app
|
| 23 |
+
βββ product_intents.json # Contains predefined intents and responses for handling queries
|
| 24 |
+
βββ reviews_data.json # Stores customer-submitted reviews and ratings
|
| 25 |
+
β
|
| 26 |
+
βββ utils/
|
| 27 |
+
β βββ analytics.py # Contains functions for product data handling and analytics
|
| 28 |
+
β
|
| 29 |
+
βββ images/ # Folder containing product images for display
|
| 30 |
+
β βββ camera.jpg # Product image of camera
|
| 31 |
+
β βββ console.jpg # Product image of gaming console
|
| 32 |
+
β βββ earbuds.jpg # Product image of earbuds
|
| 33 |
+
β βββ laptop.jpg # Product image of laptop
|
| 34 |
+
β βββ smartphone.jpg # Product image of smartphone
|
| 35 |
+
β βββ smartwatch.jpg # Product image of smartwatch
|
| 36 |
+
β βββ tablet.jpg # Product image of tablet
|
| 37 |
+
β
|
| 38 |
+
βββ pages/ # Contains individual Streamlit pages for different app views
|
| 39 |
+
β βββ admin_dashboard.py # Page for admin dashboard to view reviews and data
|
| 40 |
+
β βββ chatbot_page.py # Page with the chatbot interface for product queries
|
| 41 |
+
β βββ product_catalog.py # Page displaying the list of available products
|
| 42 |
+
β βββ submit_review.py # Page for submitting new reviews
|
| 43 |
+
β
|
| 44 |
+
βββ train.py # Script to train model on a custom dataset for review analysis
|
| 45 |
+
βββ README.md # Project documentation
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## βοΈ **Setup Instructions**
|
| 49 |
+
|
| 50 |
+
1. **Clone the Repository**:
|
| 51 |
+
```bash
|
| 52 |
+
git clone <repository-url>
|
| 53 |
+
cd chatbot-review
|
| 54 |
+
```
|
| 55 |
+
2. **Install Dependencies**:
|
| 56 |
+
Ensure **Python** is installed and run:
|
| 57 |
+
```bash
|
| 58 |
+
pip install -r requirements.txt
|
| 59 |
+
```
|
| 60 |
+
3. **Run the Application**:
|
| 61 |
+
Start the Streamlit app by executing:
|
| 62 |
+
```bash
|
| 63 |
+
streamlit run app.py
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## π₯οΈ **Usage**
|
| 67 |
+
|
| 68 |
+
Launch the app and interact with the chatbot to inquire about products, submit reviews, and more. The app will guide you through various options based on your queries.
|
| 69 |
+
|
| 70 |
+
## π§ **Configuration**
|
| 71 |
+
|
| 72 |
+
The app's configuration can be adjusted through the `README.md` file, which includes the Streamlit SDK version and other settings.
|
| 73 |
+
|
| 74 |
+
## π **Data Handling**
|
| 75 |
+
|
| 76 |
+
- Reviews are stored in **reviews_data.json** and processed using **Pandas** for analytics.
|
| 77 |
+
- Product details are managed within the **ReviewAnalytics** class in **utils/analytics.py**.
|
| 78 |
+
|
| 79 |
+
## π‘ **Future Enhancements**
|
| 80 |
+
|
| 81 |
+
- Integrate more advanced NLP models for more accurate responses.
|
| 82 |
+
- Expand the product catalog and review database.
|
| 83 |
+
- Improve UI/UX for a more intuitive user experience.
|
| 84 |
+
|
| 85 |
+
## π **License**
|
| 86 |
+
|
| 87 |
+
This project is licensed under the **MIT License**.
|
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# ββββββββ βββββββ βββ βββ ββββββ βββ βββ
|
| 3 |
+
# ββββββββ βββββββββ βββ βββ ββββββββ βββ βββ
|
| 4 |
+
# ββββββββββββββββββββββββ ββββββββ βββ βββ ββββββββ ββββββββ βββ βββ ββββββββββββββββββββββββ
|
| 5 |
+
# ββββββββββββββββββββββββ ββββββββ βββ βββ ββββββββ ββββββββ βββ βββ ββββββββββββββββββββββββ
|
| 6 |
+
# ββββββββ βββββββββ βββ βββ βββ βββ βββ ββββββββ
|
| 7 |
+
# ββββββββ βββββββ βββ βββ βββ βββ βββ ββββββββ
|
| 8 |
+
|
| 9 |
+
# *******************************************************
|
| 10 |
+
# Created with π by - ππ¨π‘ππ’π₯ ππ‘ππ’π€π‘ | π
|
| 11 |
+
# *******************************************************
|
| 12 |
+
|
| 13 |
+
# -------------------------------------------------------
|
| 14 |
+
# β¨ Support the Code π»:
|
| 15 |
+
# β Buy Me A Coffee: https://buymeacoffee.com/sohails07
|
| 16 |
+
# -------------------------------------------------------
|
| 17 |
+
|
| 18 |
+
# π± LET'S CONNECT π:
|
| 19 |
+
# π **Best way to contact**:
|
| 20 |
+
# π² Telegram: https://t.me/sohails_07
|
| 21 |
+
|
| 22 |
+
# π **Other Platforms**:
|
| 23 |
+
# πΈ Instagram:
|
| 24 |
+
# - Personal: https://www.instagram.com/sohails_07/
|
| 25 |
+
# -------------------------------------------------------
|
| 26 |
+
|
| 27 |
+
# π₯ **For Any Questions or Concerns**:
|
| 28 |
+
# Feel free to reach out to us! Whether it's about coding or life, we're here to help you grow. Let's chat!
|
| 29 |
+
|
| 30 |
+
# -------------------------------------------------------
|
| 31 |
+
# π **Stay Tuned**:
|
| 32 |
+
# Don't miss out on more exciting content! Hit the Follow button on our Github page:
|
| 33 |
+
# π Github: https://github.com/Sohail-Shaikh-07/
|
| 34 |
+
# -------------------------------------------------------
|
| 35 |
+
|
| 36 |
+
# β‘ **Pro Tip**:
|
| 37 |
+
# For the best experience, stick with the default library versions shown.
|
| 38 |
+
# Weβve got you covered for the smoothest coding ride! π
|
| 39 |
+
# -------------------------------------------------------
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# ************************************************************* γIγγMγγPγγOγγRγγTγγSγ *************************************************************
|
| 44 |
+
|
| 45 |
+
import streamlit as st
|
| 46 |
+
from utils.analytics import ReviewAnalytics
|
| 47 |
+
from pages.product_catalog import show_product_catalog
|
| 48 |
+
from pages.submit_review import show_submit_review
|
| 49 |
+
from pages.chatbot_page import show_chatbot
|
| 50 |
+
from pages.admin_dashboard import show_admin_dashboard
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# ************************************************************* γMγγAγγIγγNγ *************************************************************
|
| 54 |
+
|
| 55 |
+
def main():
|
| 56 |
+
st.set_page_config(
|
| 57 |
+
page_title="Product Review ChatBot",
|
| 58 |
+
layout="wide",
|
| 59 |
+
initial_sidebar_state="expanded",
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Initialize systems
|
| 63 |
+
analytics = ReviewAnalytics()
|
| 64 |
+
|
| 65 |
+
# Initialize session state for page if not exists
|
| 66 |
+
if "current_page" not in st.session_state:
|
| 67 |
+
st.session_state.current_page = "Products Catalog"
|
| 68 |
+
|
| 69 |
+
# Hide all default elements and the text navigation --- because it is visible on app and looks unpleasant
|
| 70 |
+
st.markdown(
|
| 71 |
+
"""
|
| 72 |
+
<style>
|
| 73 |
+
#MainMenu {visibility: hidden;}
|
| 74 |
+
footer {visibility: hidden;}
|
| 75 |
+
header {visibility: hidden;}
|
| 76 |
+
div[data-testid="stSidebarNav"] {display: none;}
|
| 77 |
+
</style>
|
| 78 |
+
""",
|
| 79 |
+
unsafe_allow_html=True,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Only show the selectbox for navigation on app
|
| 83 |
+
page = st.sidebar.selectbox(
|
| 84 |
+
"Choose a page",
|
| 85 |
+
["Products Catalog", "Submit Review", "ChatBot", "Admin Dashboard"],
|
| 86 |
+
index=["Products Catalog", "Submit Review", "ChatBot", "Admin Dashboard"].index(
|
| 87 |
+
st.session_state.current_page
|
| 88 |
+
),
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Update current page in session state when changed
|
| 92 |
+
if page != st.session_state.current_page:
|
| 93 |
+
st.session_state.current_page = page
|
| 94 |
+
st.rerun()
|
| 95 |
+
|
| 96 |
+
# Route to appropriate page
|
| 97 |
+
if st.session_state.current_page == "Products Catalog":
|
| 98 |
+
show_product_catalog(analytics)
|
| 99 |
+
elif st.session_state.current_page == "Submit Review":
|
| 100 |
+
show_submit_review(analytics)
|
| 101 |
+
elif st.session_state.current_page == "ChatBot":
|
| 102 |
+
show_chatbot()
|
| 103 |
+
else: # Admin Dashboard
|
| 104 |
+
show_admin_dashboard(analytics)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
if __name__ == "__main__":
|
| 108 |
+
main()
|
chat.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# ββββββββ βββββββ βββ βββ ββββββ βββ βββ
|
| 3 |
+
# ββββββββ βββββββββ βββ βββ ββββββββ βββ βββ
|
| 4 |
+
# ββββββββββββββββββββββββ ββββββββ βββ βββ ββββββββ ββββββββ βββ βββ ββββββββββββββββββββββββ
|
| 5 |
+
# ββββββββββββββββββββββββ ββββββββ βββ βββ ββββββββ ββββββββ βββ βββ ββββββββββββββββββββββββ
|
| 6 |
+
# ββββββββ βββββββββ βββ βββ βββ βββ βββ ββββββββ
|
| 7 |
+
# ββββββββ βββββββ βββ βββ βββ βββ βββ ββββββββ
|
| 8 |
+
|
| 9 |
+
# *******************************************************
|
| 10 |
+
# Created with π by - ππ¨π‘ππ’π₯ ππ‘ππ’π€π‘ | π
|
| 11 |
+
# *******************************************************
|
| 12 |
+
|
| 13 |
+
# -------------------------------------------------------
|
| 14 |
+
# β¨ Support the Code π»:
|
| 15 |
+
# β Buy Me A Coffee: https://buymeacoffee.com/sohails07
|
| 16 |
+
# -------------------------------------------------------
|
| 17 |
+
|
| 18 |
+
# π± LET'S CONNECT π:
|
| 19 |
+
# π **Best way to contact**:
|
| 20 |
+
# π² Telegram: https://t.me/sohails_07
|
| 21 |
+
|
| 22 |
+
# π **Other Platforms**:
|
| 23 |
+
# πΈ Instagram:
|
| 24 |
+
# - Personal: https://www.instagram.com/sohails_07/
|
| 25 |
+
# -------------------------------------------------------
|
| 26 |
+
|
| 27 |
+
# π₯ **For Any Questions or Concerns**:
|
| 28 |
+
# Feel free to reach out to us! Whether it's about coding or life, we're here to help you grow. Let's chat!
|
| 29 |
+
|
| 30 |
+
# -------------------------------------------------------
|
| 31 |
+
# π **Stay Tuned**:
|
| 32 |
+
# Don't miss out on more exciting content! Hit the Follow button on our Github page:
|
| 33 |
+
# π Github: https://github.com/Sohail-Shaikh-07/
|
| 34 |
+
# -------------------------------------------------------
|
| 35 |
+
|
| 36 |
+
# β‘ **Pro Tip**:
|
| 37 |
+
# For the best experience, stick with the default library versions shown.
|
| 38 |
+
# Weβve got you covered for the smoothest coding ride! π
|
| 39 |
+
# -------------------------------------------------------
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# ************************************************************* γIγγMγγPγγOγγRγγTγγSγ *************************************************************
|
| 44 |
+
|
| 45 |
+
import random
|
| 46 |
+
import json
|
| 47 |
+
import torch
|
| 48 |
+
import numpy as np
|
| 49 |
+
import string
|
| 50 |
+
|
| 51 |
+
# ************************************************************* γCγγLγγAγγSγγSγ *************************************************************
|
| 52 |
+
|
| 53 |
+
class ChatBot:
|
| 54 |
+
def __init__(
|
| 55 |
+
self,
|
| 56 |
+
model_path="chatbot_model.pth",
|
| 57 |
+
intents_path="product_intents.json",
|
| 58 |
+
confidence_threshold=0.75,
|
| 59 |
+
):
|
| 60 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 61 |
+
self.confidence_threshold = confidence_threshold
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
# loading the intents file where the chatbot data is stored in json format
|
| 65 |
+
with open(intents_path, "r", encoding="utf-8") as f:
|
| 66 |
+
self.intents = json.load(f)
|
| 67 |
+
|
| 68 |
+
# Load trained model
|
| 69 |
+
data = torch.load(model_path, map_location=self.device)
|
| 70 |
+
self.input_size = data["input_size"]
|
| 71 |
+
self.hidden_size = data["hidden_size"]
|
| 72 |
+
self.output_size = data["output_size"]
|
| 73 |
+
self.all_words = data["all_words"]
|
| 74 |
+
self.tags = data["tags"]
|
| 75 |
+
|
| 76 |
+
# Initialize model
|
| 77 |
+
self.model = NeuralNet(
|
| 78 |
+
self.input_size, self.hidden_size, self.output_size
|
| 79 |
+
).to(self.device)
|
| 80 |
+
self.model.load_state_dict(data["model_state"])
|
| 81 |
+
self.model.eval()
|
| 82 |
+
|
| 83 |
+
print("ChatBot initialized successfully!")
|
| 84 |
+
|
| 85 |
+
except FileNotFoundError as e:
|
| 86 |
+
print(f"Error: Could not find {e.filename}")
|
| 87 |
+
raise
|
| 88 |
+
except json.JSONDecodeError:
|
| 89 |
+
print("Error: Invalid JSON format in intents file")
|
| 90 |
+
raise
|
| 91 |
+
except Exception as e:
|
| 92 |
+
print(f"Error initializing chatbot: {str(e)}")
|
| 93 |
+
raise
|
| 94 |
+
|
| 95 |
+
def clean_text(self, text):
|
| 96 |
+
"""Clean and tokenize text"""
|
| 97 |
+
return text.lower().split()
|
| 98 |
+
|
| 99 |
+
def stem(self, word):
|
| 100 |
+
"""Simple stemming function"""
|
| 101 |
+
|
| 102 |
+
suffixes = ["ing", "ly", "ed", "es", "s", "er", "est", "y"]
|
| 103 |
+
for suffix in suffixes:
|
| 104 |
+
if word.endswith(suffix):
|
| 105 |
+
return word[: -len(suffix)]
|
| 106 |
+
return word
|
| 107 |
+
|
| 108 |
+
def bag_of_words(self, tokenized_sentence):
|
| 109 |
+
"""Convert sentence into bag of words"""
|
| 110 |
+
|
| 111 |
+
sentence_words = [self.stem(word) for word in tokenized_sentence]
|
| 112 |
+
|
| 113 |
+
bag = np.zeros(len(self.all_words), dtype=np.float32)
|
| 114 |
+
|
| 115 |
+
for idx, w in enumerate(self.all_words):
|
| 116 |
+
if w in sentence_words:
|
| 117 |
+
bag[idx] = 1
|
| 118 |
+
return bag
|
| 119 |
+
|
| 120 |
+
def get_response(self, sentence):
|
| 121 |
+
try:
|
| 122 |
+
|
| 123 |
+
sentence_tokens = self.clean_text(sentence)
|
| 124 |
+
|
| 125 |
+
if not sentence_tokens:
|
| 126 |
+
return "Please say something!", 0.0
|
| 127 |
+
|
| 128 |
+
X = self.bag_of_words(sentence_tokens)
|
| 129 |
+
X = X.reshape(1, X.shape[0])
|
| 130 |
+
X = torch.from_numpy(X).to(self.device)
|
| 131 |
+
|
| 132 |
+
output = self.model(X)
|
| 133 |
+
_, predicted = torch.max(output, dim=1)
|
| 134 |
+
|
| 135 |
+
probs = torch.softmax(output, dim=1)
|
| 136 |
+
prob = probs[0][predicted.item()]
|
| 137 |
+
|
| 138 |
+
if prob.item() > self.confidence_threshold:
|
| 139 |
+
tag = self.tags[predicted.item()]
|
| 140 |
+
|
| 141 |
+
for intent in self.intents["intents"]:
|
| 142 |
+
if intent["tag"] == tag:
|
| 143 |
+
responses = intent["responses"]
|
| 144 |
+
return random.choice(responses), prob.item()
|
| 145 |
+
|
| 146 |
+
return (
|
| 147 |
+
"I'm not quite sure about that. Could you rephrase or ask something else?", # Bot will display message if something is unrelevant
|
| 148 |
+
prob.item(),
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"Error generating response: {str(e)}")
|
| 153 |
+
return "I'm having trouble processing that right now.", 0.0
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class NeuralNet(torch.nn.Module):
|
| 157 |
+
def __init__(self, input_size, hidden_size, num_classes):
|
| 158 |
+
super(NeuralNet, self).__init__()
|
| 159 |
+
self.l1 = torch.nn.Linear(input_size, hidden_size)
|
| 160 |
+
self.l2 = torch.nn.Linear(hidden_size, hidden_size)
|
| 161 |
+
self.l3 = torch.nn.Linear(hidden_size, num_classes)
|
| 162 |
+
self.relu = torch.nn.ReLU()
|
| 163 |
+
|
| 164 |
+
def forward(self, x):
|
| 165 |
+
out = self.l1(x)
|
| 166 |
+
out = self.relu(out)
|
| 167 |
+
out = self.l2(out)
|
| 168 |
+
out = self.relu(out)
|
| 169 |
+
out = self.l3(out)
|
| 170 |
+
return out
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
# ************************************************************* γMγγAγγIγγNγ *************************************************************
|
| 174 |
+
|
| 175 |
+
def main():
|
| 176 |
+
print("\n=== ChatBot System ===")
|
| 177 |
+
print("Commands:")
|
| 178 |
+
print("- 'quit' or 'exit': Close the program")
|
| 179 |
+
print("- 'restart': Start a new conversation")
|
| 180 |
+
print("=" * 50)
|
| 181 |
+
|
| 182 |
+
while True:
|
| 183 |
+
# Initialize chatbot
|
| 184 |
+
print("\nInitializing ChatBot...")
|
| 185 |
+
try:
|
| 186 |
+
chatbot = ChatBot()
|
| 187 |
+
print("\nChatBot is ready! (Type 'restart' to reset, 'quit' to exit)")
|
| 188 |
+
print("-" * 50)
|
| 189 |
+
|
| 190 |
+
# Inner loop for conversation
|
| 191 |
+
while True:
|
| 192 |
+
user_input = input("You: ").strip()
|
| 193 |
+
|
| 194 |
+
if user_input.lower() in ["quit", "exit"]:
|
| 195 |
+
print("ChatBot: Goodbye! Have a great day!")
|
| 196 |
+
return # Exit the program
|
| 197 |
+
|
| 198 |
+
if user_input.lower() == "restart":
|
| 199 |
+
print("\nRestarting conversation...")
|
| 200 |
+
break
|
| 201 |
+
|
| 202 |
+
if not user_input:
|
| 203 |
+
print("ChatBot: Please say something!")
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
+
response, confidence = chatbot.get_response(user_input)
|
| 207 |
+
print(f"ChatBot: {response}")
|
| 208 |
+
if confidence > 0:
|
| 209 |
+
print(f"Confidence: {confidence:.2%}")
|
| 210 |
+
print("-" * 50)
|
| 211 |
+
|
| 212 |
+
except KeyboardInterrupt:
|
| 213 |
+
print("\nChatBot: Goodbye! Have a great day!")
|
| 214 |
+
return
|
| 215 |
+
except Exception as e:
|
| 216 |
+
print(f"An error occurred: {str(e)}")
|
| 217 |
+
user_input = input("Would you like to restart? (yes/no): ").strip().lower()
|
| 218 |
+
if user_input != "yes":
|
| 219 |
+
return
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
if __name__ == "__main__":
|
| 223 |
+
main()
|
chatbot_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbb81f062654abfd983eeb3d24000aec714f3370b94211304c8fc12e495791e4
|
| 3 |
+
size 5508
|
product_intents.json
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"intents": [
|
| 3 |
+
{
|
| 4 |
+
"tag": "product_inquiry",
|
| 5 |
+
"patterns": [
|
| 6 |
+
"Tell me about your products",
|
| 7 |
+
"What products do you offer",
|
| 8 |
+
"What can I buy here",
|
| 9 |
+
"Show me your products",
|
| 10 |
+
"What do you sell"
|
| 11 |
+
],
|
| 12 |
+
"responses": [
|
| 13 |
+
"We offer a wide range of products. What specific category are you interested in?",
|
| 14 |
+
"Our product catalog includes various items. Is there something specific you're looking for?",
|
| 15 |
+
"I'd be happy to tell you about our products. What type of product interests you?"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"tag": "product_review",
|
| 20 |
+
"patterns": [
|
| 21 |
+
"How good is this product",
|
| 22 |
+
"What do people say about this",
|
| 23 |
+
"Is this product worth buying",
|
| 24 |
+
"Reviews for this product",
|
| 25 |
+
"Customer feedback"
|
| 26 |
+
],
|
| 27 |
+
"responses": [
|
| 28 |
+
"Based on customer reviews, this product has received positive feedback for its quality and value.",
|
| 29 |
+
"Our customers have generally been satisfied with this product. Would you like to see specific reviews?",
|
| 30 |
+
"This product has been well-received by our customers. Let me share some highlights from recent reviews."
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"tag": "price_inquiry",
|
| 35 |
+
"patterns": [
|
| 36 |
+
"How much does it cost",
|
| 37 |
+
"What's the price",
|
| 38 |
+
"Is it expensive",
|
| 39 |
+
"Price range",
|
| 40 |
+
"Cost of product"
|
| 41 |
+
],
|
| 42 |
+
"responses": [
|
| 43 |
+
"I can help you with pricing information. Could you specify which product you're interested in?",
|
| 44 |
+
"Prices vary depending on the specific product and model. Which item would you like to know about?",
|
| 45 |
+
"Let me check the current price for you. Which product are you looking at?"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"tag": "comparison",
|
| 50 |
+
"patterns": [
|
| 51 |
+
"Compare products",
|
| 52 |
+
"Which is better",
|
| 53 |
+
"Difference between products",
|
| 54 |
+
"Compare features",
|
| 55 |
+
"Product comparison"
|
| 56 |
+
],
|
| 57 |
+
"responses": [
|
| 58 |
+
"I can help you compare products. Which items would you like to compare?",
|
| 59 |
+
"Let me help you understand the differences between our products. Which ones are you considering?",
|
| 60 |
+
"I'll be happy to compare features for you. Which products would you like to know more about?"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"tag": "availability",
|
| 65 |
+
"patterns": [
|
| 66 |
+
"Is it in stock",
|
| 67 |
+
"When will it be available",
|
| 68 |
+
"Do you have this product",
|
| 69 |
+
"Check stock",
|
| 70 |
+
"Available now"
|
| 71 |
+
],
|
| 72 |
+
"responses": [
|
| 73 |
+
"I can check the current availability for you. Which product are you interested in?",
|
| 74 |
+
"Let me verify the stock status. Could you specify the product?",
|
| 75 |
+
"I'll help you check if the item is in stock. Which product would you like to know about?"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"tag": "submit_review",
|
| 80 |
+
"patterns": [
|
| 81 |
+
"I want to write a review",
|
| 82 |
+
"How do I submit a review",
|
| 83 |
+
"Can I review this product",
|
| 84 |
+
"Leave feedback",
|
| 85 |
+
"Rate this product"
|
| 86 |
+
],
|
| 87 |
+
"responses": [
|
| 88 |
+
"I'll help you submit a review. Please rate the product from 1-5 stars and share your experience.",
|
| 89 |
+
"You can submit a review by rating the product and describing your experience. Would you like to proceed?",
|
| 90 |
+
"To submit a review, please tell me which product you'd like to review and share your experience."
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"tag": "sentiment_analysis",
|
| 95 |
+
"patterns": [
|
| 96 |
+
"What do people think about this product",
|
| 97 |
+
"Is this product good or bad",
|
| 98 |
+
"Overall sentiment",
|
| 99 |
+
"Product satisfaction",
|
| 100 |
+
"Customer satisfaction"
|
| 101 |
+
],
|
| 102 |
+
"responses": [
|
| 103 |
+
"Based on our sentiment analysis, this product has received mostly positive feedback.",
|
| 104 |
+
"Let me analyze the reviews for you. The overall sentiment for this product is positive.",
|
| 105 |
+
"I can tell you that customers generally rate this product favorably."
|
| 106 |
+
]
|
| 107 |
+
}
|
| 108 |
+
]
|
| 109 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.31.1
|
| 2 |
+
pandas==2.2.0
|
| 3 |
+
plotly==5.18.0
|
| 4 |
+
torch==2.2.0
|
| 5 |
+
numpy==1.26.3
|
| 6 |
+
|
reviews_data.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"product": "Smart Watch",
|
| 4 |
+
"rating": 4,
|
| 5 |
+
"review": "nice",
|
| 6 |
+
"timestamp": "2025-02-17T14:15:39.313956"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"product": "Wireless Earbuds",
|
| 10 |
+
"rating": 5,
|
| 11 |
+
"review": "Nice build quality",
|
| 12 |
+
"timestamp": "2025-02-17T14:18:47.944078"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"product": "Gaming Console",
|
| 16 |
+
"rating": 5,
|
| 17 |
+
"review": "Processing power is superb",
|
| 18 |
+
"timestamp": "2025-02-17T14:19:00.395747"
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"product": "Gaming Console",
|
| 22 |
+
"rating": 5,
|
| 23 |
+
"review": "Processing power is superb",
|
| 24 |
+
"timestamp": "2025-02-17T14:19:07.256996"
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"product": "Gaming Console",
|
| 28 |
+
"rating": 1,
|
| 29 |
+
"review": "too bad.. lagging",
|
| 30 |
+
"timestamp": "2025-02-17T14:34:51.456843"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"product": "Tablet Ultra",
|
| 34 |
+
"rating": 4,
|
| 35 |
+
"review": "nice",
|
| 36 |
+
"timestamp": "2025-02-17T14:50:55.533737"
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"product": "Gaming Console",
|
| 40 |
+
"rating": 5,
|
| 41 |
+
"review": "Superb Amazing Console",
|
| 42 |
+
"timestamp": "2025-02-18T18:01:56.433664"
|
| 43 |
+
}
|
| 44 |
+
]
|
train.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# ββββββββ βββββββ βββ βββ ββββββ βββ βββ
|
| 3 |
+
# ββββββββ βββββββββ βββ βββ ββββββββ βββ βββ
|
| 4 |
+
# ββββββββββββββββββββββββ ββββββββ βββ βββ ββββββββ ββββββββ βββ βββ ββββββββββββββββββββββββ
|
| 5 |
+
# ββββββββββββββββββββββββ ββββββββ βββ βββ ββββββββ ββββββββ βββ βββ ββββββββββββββββββββββββ
|
| 6 |
+
# ββββββββ βββββββββ βββ βββ βββ βββ βββ ββββββββ
|
| 7 |
+
# ββββββββ βββββββ βββ βββ βββ βββ βββ ββββββββ
|
| 8 |
+
|
| 9 |
+
# *******************************************************
|
| 10 |
+
# Created with π by - ππ¨π‘ππ’π₯ ππ‘ππ’π€π‘ | π
|
| 11 |
+
# *******************************************************
|
| 12 |
+
|
| 13 |
+
# -------------------------------------------------------
|
| 14 |
+
# β¨ Support the Code π»:
|
| 15 |
+
# β Buy Me A Coffee: https://buymeacoffee.com/sohails07
|
| 16 |
+
# -------------------------------------------------------
|
| 17 |
+
|
| 18 |
+
# π± LET'S CONNECT π:
|
| 19 |
+
# π **Best way to contact**:
|
| 20 |
+
# π² Telegram: https://t.me/sohails_07
|
| 21 |
+
|
| 22 |
+
# π **Other Platforms**:
|
| 23 |
+
# πΈ Instagram:
|
| 24 |
+
# - Personal: https://www.instagram.com/sohails_07/
|
| 25 |
+
# -------------------------------------------------------
|
| 26 |
+
|
| 27 |
+
# π₯ **For Any Questions or Concerns**:
|
| 28 |
+
# Feel free to reach out to us! Whether it's about coding or life, we're here to help you grow. Let's chat!
|
| 29 |
+
|
| 30 |
+
# -------------------------------------------------------
|
| 31 |
+
# π **Stay Tuned**:
|
| 32 |
+
# Don't miss out on more exciting content! Hit the Follow button on our Github page:
|
| 33 |
+
# π Github: https://github.com/Sohail-Shaikh-07/
|
| 34 |
+
# -------------------------------------------------------
|
| 35 |
+
|
| 36 |
+
# β‘ **Pro Tip**:
|
| 37 |
+
# For the best experience, stick with the default library versions shown.
|
| 38 |
+
# Weβve got you covered for the smoothest coding ride! π
|
| 39 |
+
# -------------------------------------------------------
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# ************************************************************* γIγγMγγPγγOγγRγγTγγSγ *************************************************************
|
| 44 |
+
|
| 45 |
+
import torch
|
| 46 |
+
import torch.nn as nn
|
| 47 |
+
import numpy as np
|
| 48 |
+
import json
|
| 49 |
+
import nltk
|
| 50 |
+
from nltk.stem.porter import PorterStemmer
|
| 51 |
+
from torch.utils.data import Dataset, DataLoader
|
| 52 |
+
|
| 53 |
+
# ************************************************************* γCγγLγγAγγSγγSγ *************************************************************
|
| 54 |
+
|
| 55 |
+
class NeuralNet(nn.Module):
|
| 56 |
+
def __init__(self, input_size, hidden_size, num_classes):
|
| 57 |
+
super(NeuralNet, self).__init__()
|
| 58 |
+
self.l1 = nn.Linear(input_size, hidden_size)
|
| 59 |
+
self.l2 = nn.Linear(hidden_size, hidden_size)
|
| 60 |
+
self.l3 = nn.Linear(hidden_size, num_classes)
|
| 61 |
+
self.relu = nn.ReLU()
|
| 62 |
+
|
| 63 |
+
def forward(self, x):
|
| 64 |
+
out = self.l1(x)
|
| 65 |
+
out = self.relu(out)
|
| 66 |
+
out = self.l2(out)
|
| 67 |
+
out = self.relu(out)
|
| 68 |
+
out = self.l3(out)
|
| 69 |
+
return out
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class ChatDataset(Dataset):
|
| 73 |
+
def __init__(self, X_train, y_train):
|
| 74 |
+
self.n_samples = len(X_train)
|
| 75 |
+
self.x_data = torch.FloatTensor(X_train)
|
| 76 |
+
self.y_data = torch.LongTensor(y_train)
|
| 77 |
+
|
| 78 |
+
def __getitem__(self, index):
|
| 79 |
+
return self.x_data[index], self.y_data[index]
|
| 80 |
+
|
| 81 |
+
def __len__(self):
|
| 82 |
+
return self.n_samples
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def tokenize(sentence):
|
| 86 |
+
"""
|
| 87 |
+
Split sentence into array of words/tokens
|
| 88 |
+
a token can be a word or punctuation character, or number
|
| 89 |
+
"""
|
| 90 |
+
return sentence.lower().split()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def stem(word):
|
| 94 |
+
stemmer = PorterStemmer()
|
| 95 |
+
return stemmer.stem(word.lower())
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def bag_of_words(tokenized_sentence, words):
|
| 99 |
+
sentence_words = [stem(word) for word in tokenized_sentence]
|
| 100 |
+
bag = np.zeros(len(words), dtype=np.float32)
|
| 101 |
+
for idx, w in enumerate(words):
|
| 102 |
+
if w in sentence_words:
|
| 103 |
+
bag[idx] = 1
|
| 104 |
+
return bag
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def train_model():
|
| 108 |
+
try:
|
| 109 |
+
# Download required NLTK data for model training
|
| 110 |
+
print("Downloading required NLTK data...")
|
| 111 |
+
nltk.download('punkt')
|
| 112 |
+
nltk.download('averaged_perceptron_tagger')
|
| 113 |
+
nltk.download('wordnet')
|
| 114 |
+
|
| 115 |
+
# Load the intents file
|
| 116 |
+
print("Loading product_intents.json...")
|
| 117 |
+
with open("product_intents.json", "r", encoding="utf-8") as f:
|
| 118 |
+
intents = json.load(f)
|
| 119 |
+
|
| 120 |
+
print("Processing training data...")
|
| 121 |
+
all_words = []
|
| 122 |
+
tags = []
|
| 123 |
+
xy = []
|
| 124 |
+
|
| 125 |
+
# Validate intents structure
|
| 126 |
+
if not isinstance(intents, dict) or "intents" not in intents:
|
| 127 |
+
raise ValueError(
|
| 128 |
+
"Invalid intents.json format. Root should be a dictionary with 'intents' key."
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Process each intent
|
| 132 |
+
for intent in intents["intents"]:
|
| 133 |
+
# Skip if intent is missing required fields
|
| 134 |
+
if not isinstance(intent, dict):
|
| 135 |
+
continue
|
| 136 |
+
if "tag" not in intent or "patterns" not in intent:
|
| 137 |
+
continue
|
| 138 |
+
|
| 139 |
+
tag = intent["tag"]
|
| 140 |
+
tags.append(tag)
|
| 141 |
+
|
| 142 |
+
for pattern in intent["patterns"]:
|
| 143 |
+
w = tokenize(pattern)
|
| 144 |
+
all_words.extend(w)
|
| 145 |
+
xy.append((w, tag))
|
| 146 |
+
|
| 147 |
+
# Stem and lower each word
|
| 148 |
+
print("Processing words...")
|
| 149 |
+
ignore_words = ["?", ".", "!", ","]
|
| 150 |
+
all_words = [stem(w) for w in all_words if w not in ignore_words]
|
| 151 |
+
all_words = sorted(set(all_words))
|
| 152 |
+
tags = sorted(set(tags))
|
| 153 |
+
|
| 154 |
+
print(f"Number of patterns: {len(xy)}")
|
| 155 |
+
print(f"Number of tags: {len(tags)}")
|
| 156 |
+
print(f"Number of unique stemmed words: {len(all_words)}")
|
| 157 |
+
|
| 158 |
+
# Create training data
|
| 159 |
+
X_train = []
|
| 160 |
+
y_train = []
|
| 161 |
+
|
| 162 |
+
for pattern_sentence, tag in xy:
|
| 163 |
+
bag = bag_of_words(pattern_sentence, all_words)
|
| 164 |
+
X_train.append(bag)
|
| 165 |
+
label = tags.index(tag)
|
| 166 |
+
y_train.append(label)
|
| 167 |
+
|
| 168 |
+
# Convert to numpy arrays
|
| 169 |
+
X_train = np.array(X_train)
|
| 170 |
+
y_train = np.array(y_train)
|
| 171 |
+
|
| 172 |
+
# Hyperparameters
|
| 173 |
+
num_epochs = 100 # You can increase epochs -- An epoch refers to one complete pass through the training data, where the model adjusts its parameters to minimize loss.
|
| 174 |
+
batch_size = 8
|
| 175 |
+
learning_rate = 0.001
|
| 176 |
+
input_size = len(X_train[0])
|
| 177 |
+
hidden_size = 8
|
| 178 |
+
output_size = len(tags)
|
| 179 |
+
|
| 180 |
+
print(
|
| 181 |
+
f"Training with: input_size={input_size}, hidden_size={hidden_size}, output_size={output_size}"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Create dataset
|
| 185 |
+
dataset = ChatDataset(X_train, y_train)
|
| 186 |
+
train_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)
|
| 187 |
+
|
| 188 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 189 |
+
model = NeuralNet(input_size, hidden_size, output_size).to(device)
|
| 190 |
+
|
| 191 |
+
# Loss and optimizer
|
| 192 |
+
criterion = nn.CrossEntropyLoss()
|
| 193 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
| 194 |
+
|
| 195 |
+
# Training loop
|
| 196 |
+
print("Starting training...")
|
| 197 |
+
for epoch in range(num_epochs):
|
| 198 |
+
for words, labels in train_loader:
|
| 199 |
+
words = words.to(device)
|
| 200 |
+
labels = labels.to(device)
|
| 201 |
+
|
| 202 |
+
# Forward pass
|
| 203 |
+
outputs = model(words)
|
| 204 |
+
loss = criterion(outputs, labels)
|
| 205 |
+
|
| 206 |
+
# Backward and optimize
|
| 207 |
+
optimizer.zero_grad()
|
| 208 |
+
loss.backward()
|
| 209 |
+
optimizer.step()
|
| 210 |
+
|
| 211 |
+
if (epoch + 1) % 100 == 0:
|
| 212 |
+
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
|
| 213 |
+
|
| 214 |
+
print(f"Final loss: {loss.item():.4f}")
|
| 215 |
+
|
| 216 |
+
# Save the model and data
|
| 217 |
+
data = {
|
| 218 |
+
"model_state": model.state_dict(),
|
| 219 |
+
"input_size": input_size,
|
| 220 |
+
"hidden_size": hidden_size,
|
| 221 |
+
"output_size": output_size,
|
| 222 |
+
"all_words": all_words,
|
| 223 |
+
"tags": tags,
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
torch.save(data, "chatbot_model.pth")
|
| 227 |
+
print(f"Training complete. Model saved to chatbot_model.pth")
|
| 228 |
+
|
| 229 |
+
return model, all_words, tags
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"An error occurred during training: {str(e)}")
|
| 233 |
+
import traceback
|
| 234 |
+
|
| 235 |
+
traceback.print_exc()
|
| 236 |
+
return None, None, None
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# ************************************************************* γMγγAγγIγγNγ *************************************************************
|
| 240 |
+
|
| 241 |
+
if __name__ == "__main__":
|
| 242 |
+
train_model()
|