sohail-shaikh-s07
commited on
App will work without and lxml error
Browse files
app.py
CHANGED
@@ -1,64 +1,100 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
from newspaper import Article
|
|
|
|
|
4 |
import torch
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
1. Key facts and main points
|
12 |
-
2. Important details and context
|
13 |
-
3. Maintain objectivity
|
14 |
-
4. Preserve accuracy of information
|
15 |
-
Avoid: opinions, redundancy, and unnecessary details."""
|
16 |
|
17 |
-
def
|
18 |
try:
|
19 |
-
# Download and parse
|
20 |
article = Article(url)
|
21 |
article.download()
|
22 |
article.parse()
|
|
|
23 |
|
24 |
-
# Get the text
|
25 |
text = article.text
|
26 |
|
27 |
-
#
|
28 |
-
text_with_prompt = SYSTEM_PROMPT + "\n\nArticle:\n" + text
|
29 |
-
|
30 |
-
# If the text is too long, split it into chunks
|
31 |
max_chunk_length = 1024
|
32 |
-
chunks = [
|
33 |
|
|
|
34 |
summaries = []
|
35 |
for chunk in chunks:
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
summary = summarizer(chunk, max_length=130, min_length=30, do_sample=False)
|
41 |
-
summaries.append(summary[0]['summary_text'])
|
42 |
|
43 |
-
# Combine
|
44 |
final_summary = " ".join(summaries)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
except Exception as e:
|
48 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Create Gradio interface
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from newspaper import Article
|
3 |
+
from transformers import pipeline
|
4 |
+
import nltk
|
5 |
import torch
|
6 |
|
7 |
+
# Download required NLTK data
|
8 |
+
try:
|
9 |
+
nltk.data.find('tokenizers/punkt')
|
10 |
+
except LookupError:
|
11 |
+
nltk.download('punkt')
|
12 |
|
13 |
+
# Initialize the summarization pipeline
|
14 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
def extract_and_summarize(url):
|
17 |
try:
|
18 |
+
# Download and parse article
|
19 |
article = Article(url)
|
20 |
article.download()
|
21 |
article.parse()
|
22 |
+
article.nlp()
|
23 |
|
24 |
+
# Get the main text
|
25 |
text = article.text
|
26 |
|
27 |
+
# If text is too long, split it into chunks
|
|
|
|
|
|
|
28 |
max_chunk_length = 1024
|
29 |
+
chunks = [text[i:i + max_chunk_length] for i in range(0, len(text), max_chunk_length)]
|
30 |
|
31 |
+
# Summarize each chunk
|
32 |
summaries = []
|
33 |
for chunk in chunks:
|
34 |
+
if len(chunk.strip()) > 100: # Only summarize chunks with substantial content
|
35 |
+
summary = summarizer(chunk, max_length=130, min_length=30, do_sample=False)
|
36 |
+
summaries.append(summary[0]['summary_text'])
|
|
|
|
|
|
|
37 |
|
38 |
+
# Combine summaries
|
39 |
final_summary = " ".join(summaries)
|
40 |
+
|
41 |
+
return {
|
42 |
+
"Title": article.title,
|
43 |
+
"Summary": final_summary,
|
44 |
+
"Keywords": ", ".join(article.keywords) if article.keywords else "No keywords available",
|
45 |
+
"Article Length": len(text),
|
46 |
+
"Summary Length": len(final_summary)
|
47 |
+
}
|
48 |
|
49 |
except Exception as e:
|
50 |
+
return {
|
51 |
+
"Error": f"An error occurred: {str(e)}",
|
52 |
+
"Title": "Error",
|
53 |
+
"Summary": "Could not process the article",
|
54 |
+
"Keywords": "N/A",
|
55 |
+
"Article Length": 0,
|
56 |
+
"Summary Length": 0
|
57 |
+
}
|
58 |
|
59 |
# Create Gradio interface
|
60 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
61 |
+
gr.Markdown("# 📰 News Article Summarizer")
|
62 |
+
gr.Markdown("Enter a news article URL to get a concise summary using BART-large-CNN model")
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
url_input = gr.Textbox(label="Article URL", placeholder="Enter news article URL here...")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
submit_btn = gr.Button("Summarize", variant="primary")
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
output = gr.JSON(label="Results")
|
72 |
+
|
73 |
+
# Example URLs
|
74 |
+
gr.Examples(
|
75 |
+
examples=[
|
76 |
+
["https://www.bbc.com/news/world-europe-65454331"],
|
77 |
+
["https://www.reuters.com/technology/exclusive-openai-researchers-warned-board-ai-breakthrough-ahead-sam-altman-ouster-2023-11-22/"]
|
78 |
+
],
|
79 |
+
inputs=url_input,
|
80 |
+
label="Example Articles"
|
81 |
+
)
|
82 |
+
|
83 |
+
submit_btn.click(
|
84 |
+
fn=extract_and_summarize,
|
85 |
+
inputs=url_input,
|
86 |
+
outputs=output
|
87 |
+
)
|
88 |
+
|
89 |
+
gr.Markdown("""
|
90 |
+
## How it works
|
91 |
+
1. Enter a URL of any news article
|
92 |
+
2. The app extracts the main content using newspaper3k
|
93 |
+
3. BART-large-CNN model summarizes the content
|
94 |
+
4. Get a concise summary along with article metadata
|
95 |
+
|
96 |
+
Note: For very long articles, the text is split into chunks and summarized separately.
|
97 |
+
""")
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
+
demo.launch()
|