Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import glob
|
| 3 |
import yaml
|
| 4 |
-
from typing import List, Tuple
|
| 5 |
|
| 6 |
import faiss
|
| 7 |
import numpy as np
|
|
@@ -34,27 +34,27 @@ def get_default_config():
|
|
| 34 |
return {
|
| 35 |
"kb": {
|
| 36 |
"directory": "./knowledge_base",
|
| 37 |
-
"index_directory": "./index"
|
| 38 |
},
|
| 39 |
"models": {
|
| 40 |
"embedding": "all-MiniLM-L6-v2",
|
| 41 |
-
"qa": "deepset/roberta-base-squad2"
|
| 42 |
},
|
| 43 |
"chunking": {
|
| 44 |
"chunk_size": 500,
|
| 45 |
-
"overlap": 50
|
| 46 |
},
|
| 47 |
"thresholds": {
|
| 48 |
-
"similarity": 0.3
|
| 49 |
},
|
| 50 |
"messages": {
|
| 51 |
"welcome": "Ask me anything about the documents in the knowledge base!",
|
| 52 |
-
"no_answer": "I couldn't find a relevant answer in the knowledge base."
|
| 53 |
},
|
| 54 |
"client": {
|
| 55 |
-
"name": "RAG AI Assistant"
|
| 56 |
},
|
| 57 |
-
"quick_actions": []
|
| 58 |
}
|
| 59 |
|
| 60 |
|
|
@@ -79,23 +79,23 @@ def chunk_text(text: str, chunk_size: int, overlap: int) -> List[str]:
|
|
| 79 |
"""Split text into overlapping chunks"""
|
| 80 |
if not text or not text.strip():
|
| 81 |
return []
|
| 82 |
-
|
| 83 |
chunks = []
|
| 84 |
start = 0
|
| 85 |
text_len = len(text)
|
| 86 |
-
|
| 87 |
while start < text_len:
|
| 88 |
end = min(start + chunk_size, text_len)
|
| 89 |
chunk = text[start:end].strip()
|
| 90 |
-
|
| 91 |
if chunk and len(chunk) > 20: # Avoid tiny chunks
|
| 92 |
chunks.append(chunk)
|
| 93 |
-
|
| 94 |
if end >= text_len:
|
| 95 |
break
|
| 96 |
-
|
| 97 |
start += chunk_size - overlap
|
| 98 |
-
|
| 99 |
return chunks
|
| 100 |
|
| 101 |
|
|
@@ -103,9 +103,9 @@ def load_file_text(path: str) -> str:
|
|
| 103 |
"""Load text from various file formats with error handling"""
|
| 104 |
if not os.path.exists(path):
|
| 105 |
raise FileNotFoundError(f"File not found: {path}")
|
| 106 |
-
|
| 107 |
ext = os.path.splitext(path)[1].lower()
|
| 108 |
-
|
| 109 |
try:
|
| 110 |
if ext == ".pdf":
|
| 111 |
reader = PdfReader(path)
|
|
@@ -115,15 +115,15 @@ def load_file_text(path: str) -> str:
|
|
| 115 |
if page_text:
|
| 116 |
text_parts.append(page_text)
|
| 117 |
return "\n".join(text_parts)
|
| 118 |
-
|
| 119 |
elif ext in [".docx", ".doc"]:
|
| 120 |
doc = docx.Document(path)
|
| 121 |
return "\n".join(p.text for p in doc.paragraphs if p.text.strip())
|
| 122 |
-
|
| 123 |
else: # .txt, .md, etc.
|
| 124 |
with open(path, "r", encoding="utf-8", errors="ignore") as f:
|
| 125 |
return f.read()
|
| 126 |
-
|
| 127 |
except Exception as e:
|
| 128 |
print(f"Error reading {path}: {e}")
|
| 129 |
raise
|
|
@@ -131,30 +131,30 @@ def load_file_text(path: str) -> str:
|
|
| 131 |
|
| 132 |
def load_kb_documents(kb_dir: str) -> List[Tuple[str, str]]:
|
| 133 |
"""Load all documents from knowledge base directory"""
|
| 134 |
-
docs = []
|
| 135 |
-
|
| 136 |
if not os.path.exists(kb_dir):
|
| 137 |
print(f"⚠️ Knowledge base directory not found: {kb_dir}")
|
| 138 |
print(f"Creating directory: {kb_dir}")
|
| 139 |
os.makedirs(kb_dir, exist_ok=True)
|
| 140 |
return docs
|
| 141 |
-
|
| 142 |
if not os.path.isdir(kb_dir):
|
| 143 |
print(f"⚠️ {kb_dir} is not a directory")
|
| 144 |
return docs
|
| 145 |
-
|
| 146 |
# Support multiple file formats
|
| 147 |
patterns = ["*.txt", "*.md", "*.pdf", "*.docx", "*.doc"]
|
| 148 |
paths = []
|
| 149 |
for pattern in patterns:
|
| 150 |
paths.extend(glob.glob(os.path.join(kb_dir, pattern)))
|
| 151 |
-
|
| 152 |
if not paths:
|
| 153 |
print(f"⚠️ No documents found in {kb_dir}")
|
| 154 |
return docs
|
| 155 |
-
|
| 156 |
print(f"Found {len(paths)} documents in knowledge base")
|
| 157 |
-
|
| 158 |
for path in paths:
|
| 159 |
try:
|
| 160 |
text = load_file_text(path)
|
|
@@ -165,7 +165,7 @@ def load_kb_documents(kb_dir: str) -> List[Tuple[str, str]]:
|
|
| 165 |
print(f"⚠️ Empty file: {os.path.basename(path)}")
|
| 166 |
except Exception as e:
|
| 167 |
print(f"✗ Could not read {path}: {e}")
|
| 168 |
-
|
| 169 |
return docs
|
| 170 |
|
| 171 |
|
|
@@ -181,7 +181,7 @@ class RAGIndex:
|
|
| 181 |
self.chunk_sources: List[str] = []
|
| 182 |
self.index = None
|
| 183 |
self.initialized = False
|
| 184 |
-
|
| 185 |
try:
|
| 186 |
print("🔄 Initializing RAG Assistant...")
|
| 187 |
self._initialize_models()
|
|
@@ -197,7 +197,7 @@ class RAGIndex:
|
|
| 197 |
try:
|
| 198 |
print(f"Loading embedding model: {EMBEDDING_MODEL_NAME}")
|
| 199 |
self.embedder = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
| 200 |
-
|
| 201 |
print(f"Loading QA model: {QA_MODEL_NAME}")
|
| 202 |
self.qa_pipeline = pipeline(
|
| 203 |
"question-answering",
|
|
@@ -232,16 +232,16 @@ class RAGIndex:
|
|
| 232 |
# Build new index
|
| 233 |
print("Building new FAISS index from knowledge base...")
|
| 234 |
docs = load_kb_documents(KB_DIR)
|
| 235 |
-
|
| 236 |
if not docs:
|
| 237 |
print("⚠️ No documents found in knowledge base")
|
| 238 |
print(f" Please add .txt, .md, .pdf, or .docx files to: {KB_DIR}")
|
| 239 |
self.index = None
|
| 240 |
return
|
| 241 |
|
| 242 |
-
all_chunks = []
|
| 243 |
-
all_sources = []
|
| 244 |
-
|
| 245 |
for source, text in docs:
|
| 246 |
chunks = chunk_text(text, CHUNK_SIZE, CHUNK_OVERLAP)
|
| 247 |
for chunk in chunks:
|
|
@@ -255,14 +255,14 @@ class RAGIndex:
|
|
| 255 |
|
| 256 |
print(f"Created {len(all_chunks)} chunks from {len(docs)} documents")
|
| 257 |
print("Generating embeddings...")
|
| 258 |
-
|
| 259 |
embeddings = self.embedder.encode(
|
| 260 |
-
all_chunks,
|
| 261 |
-
show_progress_bar=True,
|
| 262 |
convert_to_numpy=True,
|
| 263 |
-
batch_size=32
|
| 264 |
)
|
| 265 |
-
|
| 266 |
dimension = embeddings.shape[1]
|
| 267 |
index = faiss.IndexFlatIP(dimension)
|
| 268 |
|
|
@@ -273,10 +273,13 @@ class RAGIndex:
|
|
| 273 |
# Save index
|
| 274 |
try:
|
| 275 |
faiss.write_index(index, idx_path)
|
| 276 |
-
np.save(
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
| 280 |
print("✓ Index saved successfully")
|
| 281 |
except Exception as e:
|
| 282 |
print(f"⚠️ Could not save index: {e}")
|
|
@@ -289,25 +292,27 @@ class RAGIndex:
|
|
| 289 |
"""Retrieve relevant chunks for a query"""
|
| 290 |
if not query or not query.strip():
|
| 291 |
return []
|
| 292 |
-
|
| 293 |
if self.index is None or not self.initialized:
|
| 294 |
return []
|
| 295 |
-
|
| 296 |
try:
|
| 297 |
q_emb = self.embedder.encode([query], convert_to_numpy=True)
|
| 298 |
faiss.normalize_L2(q_emb)
|
| 299 |
scores, idxs = self.index.search(q_emb, min(top_k, len(self.chunks)))
|
| 300 |
-
|
| 301 |
-
results = []
|
| 302 |
for score, idx in zip(scores[0], idxs[0]):
|
| 303 |
if idx == -1 or idx >= len(self.chunks):
|
| 304 |
continue
|
| 305 |
if score < SIM_THRESHOLD:
|
| 306 |
continue
|
| 307 |
-
results.append(
|
| 308 |
-
|
|
|
|
|
|
|
| 309 |
return results
|
| 310 |
-
|
| 311 |
except Exception as e:
|
| 312 |
print(f"Retrieval error: {e}")
|
| 313 |
return []
|
|
@@ -316,20 +321,20 @@ class RAGIndex:
|
|
| 316 |
"""Answer a question using RAG"""
|
| 317 |
if not self.initialized:
|
| 318 |
return "❌ Assistant not properly initialized. Please check the logs."
|
| 319 |
-
|
| 320 |
if not question or not question.strip():
|
| 321 |
return "Please ask a question."
|
| 322 |
-
|
| 323 |
if self.index is None:
|
| 324 |
return (
|
| 325 |
f"📚 Knowledge base is empty.\n\n"
|
| 326 |
f"Please add documents to: `{KB_DIR}`\n"
|
| 327 |
f"Supported formats: .txt, .md, .pdf, .docx"
|
| 328 |
)
|
| 329 |
-
|
| 330 |
# Retrieve relevant contexts
|
| 331 |
contexts = self.retrieve(question, top_k=3)
|
| 332 |
-
|
| 333 |
if not contexts:
|
| 334 |
return (
|
| 335 |
f"{NO_ANSWER_MSG}\n\n"
|
|
@@ -342,17 +347,17 @@ class RAGIndex:
|
|
| 342 |
# Truncate context if too long (max 512 tokens for most QA models)
|
| 343 |
max_context_length = 2000 # characters, roughly 512 tokens
|
| 344 |
truncated_ctx = ctx[:max_context_length]
|
| 345 |
-
|
| 346 |
qa_input = {"question": question, "context": truncated_ctx}
|
| 347 |
-
|
| 348 |
try:
|
| 349 |
result = self.qa_pipeline(qa_input)
|
| 350 |
answer_text = result.get("answer", "").strip()
|
| 351 |
answer_score = result.get("score", 0.0)
|
| 352 |
-
|
| 353 |
if answer_text and answer_score > 0.01: # Minimum confidence threshold
|
| 354 |
answers.append((answer_text, source, answer_score, score))
|
| 355 |
-
|
| 356 |
except Exception as e:
|
| 357 |
print(f"QA error on context from {source}: {e}")
|
| 358 |
continue
|
|
@@ -388,32 +393,39 @@ print("=" * 50)
|
|
| 388 |
# GRADIO CHAT
|
| 389 |
# -----------------------------
|
| 390 |
|
| 391 |
-
def rag_respond(message
|
| 392 |
"""Handle chat messages"""
|
| 393 |
-
if not message or not message.strip():
|
| 394 |
return "Please enter a question."
|
| 395 |
-
|
| 396 |
-
return rag_index.answer(message)
|
| 397 |
|
| 398 |
|
| 399 |
# Build interface
|
| 400 |
description = WELCOME_MSG
|
| 401 |
if not rag_index.initialized or rag_index.index is None:
|
| 402 |
-
description +=
|
| 403 |
-
|
| 404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
if not examples and rag_index.initialized and rag_index.index is not None:
|
| 406 |
examples = [
|
| 407 |
"What is this document about?",
|
| 408 |
"Can you summarize the main points?",
|
| 409 |
-
"What are the key findings?"
|
| 410 |
]
|
| 411 |
|
| 412 |
chat = gr.ChatInterface(
|
| 413 |
fn=rag_respond,
|
| 414 |
title=CONFIG["client"]["name"],
|
| 415 |
description=description,
|
| 416 |
-
type="
|
| 417 |
examples=examples if examples else None,
|
| 418 |
cache_examples=False,
|
| 419 |
retry_btn="🔄 Retry",
|
|
@@ -423,8 +435,9 @@ chat = gr.ChatInterface(
|
|
| 423 |
|
| 424 |
if __name__ == "__main__":
|
| 425 |
# Launch with better settings for Hugging Face Spaces
|
|
|
|
| 426 |
chat.launch(
|
| 427 |
server_name="0.0.0.0",
|
| 428 |
-
server_port=
|
| 429 |
-
share=False
|
| 430 |
-
)
|
|
|
|
| 1 |
import os
|
| 2 |
import glob
|
| 3 |
import yaml
|
| 4 |
+
from typing import List, Tuple
|
| 5 |
|
| 6 |
import faiss
|
| 7 |
import numpy as np
|
|
|
|
| 34 |
return {
|
| 35 |
"kb": {
|
| 36 |
"directory": "./knowledge_base",
|
| 37 |
+
"index_directory": "./index",
|
| 38 |
},
|
| 39 |
"models": {
|
| 40 |
"embedding": "all-MiniLM-L6-v2",
|
| 41 |
+
"qa": "deepset/roberta-base-squad2",
|
| 42 |
},
|
| 43 |
"chunking": {
|
| 44 |
"chunk_size": 500,
|
| 45 |
+
"overlap": 50,
|
| 46 |
},
|
| 47 |
"thresholds": {
|
| 48 |
+
"similarity": 0.3,
|
| 49 |
},
|
| 50 |
"messages": {
|
| 51 |
"welcome": "Ask me anything about the documents in the knowledge base!",
|
| 52 |
+
"no_answer": "I couldn't find a relevant answer in the knowledge base.",
|
| 53 |
},
|
| 54 |
"client": {
|
| 55 |
+
"name": "RAG AI Assistant",
|
| 56 |
},
|
| 57 |
+
"quick_actions": [],
|
| 58 |
}
|
| 59 |
|
| 60 |
|
|
|
|
| 79 |
"""Split text into overlapping chunks"""
|
| 80 |
if not text or not text.strip():
|
| 81 |
return []
|
| 82 |
+
|
| 83 |
chunks = []
|
| 84 |
start = 0
|
| 85 |
text_len = len(text)
|
| 86 |
+
|
| 87 |
while start < text_len:
|
| 88 |
end = min(start + chunk_size, text_len)
|
| 89 |
chunk = text[start:end].strip()
|
| 90 |
+
|
| 91 |
if chunk and len(chunk) > 20: # Avoid tiny chunks
|
| 92 |
chunks.append(chunk)
|
| 93 |
+
|
| 94 |
if end >= text_len:
|
| 95 |
break
|
| 96 |
+
|
| 97 |
start += chunk_size - overlap
|
| 98 |
+
|
| 99 |
return chunks
|
| 100 |
|
| 101 |
|
|
|
|
| 103 |
"""Load text from various file formats with error handling"""
|
| 104 |
if not os.path.exists(path):
|
| 105 |
raise FileNotFoundError(f"File not found: {path}")
|
| 106 |
+
|
| 107 |
ext = os.path.splitext(path)[1].lower()
|
| 108 |
+
|
| 109 |
try:
|
| 110 |
if ext == ".pdf":
|
| 111 |
reader = PdfReader(path)
|
|
|
|
| 115 |
if page_text:
|
| 116 |
text_parts.append(page_text)
|
| 117 |
return "\n".join(text_parts)
|
| 118 |
+
|
| 119 |
elif ext in [".docx", ".doc"]:
|
| 120 |
doc = docx.Document(path)
|
| 121 |
return "\n".join(p.text for p in doc.paragraphs if p.text.strip())
|
| 122 |
+
|
| 123 |
else: # .txt, .md, etc.
|
| 124 |
with open(path, "r", encoding="utf-8", errors="ignore") as f:
|
| 125 |
return f.read()
|
| 126 |
+
|
| 127 |
except Exception as e:
|
| 128 |
print(f"Error reading {path}: {e}")
|
| 129 |
raise
|
|
|
|
| 131 |
|
| 132 |
def load_kb_documents(kb_dir: str) -> List[Tuple[str, str]]:
|
| 133 |
"""Load all documents from knowledge base directory"""
|
| 134 |
+
docs: List[Tuple[str, str]] = []
|
| 135 |
+
|
| 136 |
if not os.path.exists(kb_dir):
|
| 137 |
print(f"⚠️ Knowledge base directory not found: {kb_dir}")
|
| 138 |
print(f"Creating directory: {kb_dir}")
|
| 139 |
os.makedirs(kb_dir, exist_ok=True)
|
| 140 |
return docs
|
| 141 |
+
|
| 142 |
if not os.path.isdir(kb_dir):
|
| 143 |
print(f"⚠️ {kb_dir} is not a directory")
|
| 144 |
return docs
|
| 145 |
+
|
| 146 |
# Support multiple file formats
|
| 147 |
patterns = ["*.txt", "*.md", "*.pdf", "*.docx", "*.doc"]
|
| 148 |
paths = []
|
| 149 |
for pattern in patterns:
|
| 150 |
paths.extend(glob.glob(os.path.join(kb_dir, pattern)))
|
| 151 |
+
|
| 152 |
if not paths:
|
| 153 |
print(f"⚠️ No documents found in {kb_dir}")
|
| 154 |
return docs
|
| 155 |
+
|
| 156 |
print(f"Found {len(paths)} documents in knowledge base")
|
| 157 |
+
|
| 158 |
for path in paths:
|
| 159 |
try:
|
| 160 |
text = load_file_text(path)
|
|
|
|
| 165 |
print(f"⚠️ Empty file: {os.path.basename(path)}")
|
| 166 |
except Exception as e:
|
| 167 |
print(f"✗ Could not read {path}: {e}")
|
| 168 |
+
|
| 169 |
return docs
|
| 170 |
|
| 171 |
|
|
|
|
| 181 |
self.chunk_sources: List[str] = []
|
| 182 |
self.index = None
|
| 183 |
self.initialized = False
|
| 184 |
+
|
| 185 |
try:
|
| 186 |
print("🔄 Initializing RAG Assistant...")
|
| 187 |
self._initialize_models()
|
|
|
|
| 197 |
try:
|
| 198 |
print(f"Loading embedding model: {EMBEDDING_MODEL_NAME}")
|
| 199 |
self.embedder = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
| 200 |
+
|
| 201 |
print(f"Loading QA model: {QA_MODEL_NAME}")
|
| 202 |
self.qa_pipeline = pipeline(
|
| 203 |
"question-answering",
|
|
|
|
| 232 |
# Build new index
|
| 233 |
print("Building new FAISS index from knowledge base...")
|
| 234 |
docs = load_kb_documents(KB_DIR)
|
| 235 |
+
|
| 236 |
if not docs:
|
| 237 |
print("⚠️ No documents found in knowledge base")
|
| 238 |
print(f" Please add .txt, .md, .pdf, or .docx files to: {KB_DIR}")
|
| 239 |
self.index = None
|
| 240 |
return
|
| 241 |
|
| 242 |
+
all_chunks: List[str] = []
|
| 243 |
+
all_sources: List[str] = []
|
| 244 |
+
|
| 245 |
for source, text in docs:
|
| 246 |
chunks = chunk_text(text, CHUNK_SIZE, CHUNK_OVERLAP)
|
| 247 |
for chunk in chunks:
|
|
|
|
| 255 |
|
| 256 |
print(f"Created {len(all_chunks)} chunks from {len(docs)} documents")
|
| 257 |
print("Generating embeddings...")
|
| 258 |
+
|
| 259 |
embeddings = self.embedder.encode(
|
| 260 |
+
all_chunks,
|
| 261 |
+
show_progress_bar=True,
|
| 262 |
convert_to_numpy=True,
|
| 263 |
+
batch_size=32,
|
| 264 |
)
|
| 265 |
+
|
| 266 |
dimension = embeddings.shape[1]
|
| 267 |
index = faiss.IndexFlatIP(dimension)
|
| 268 |
|
|
|
|
| 273 |
# Save index
|
| 274 |
try:
|
| 275 |
faiss.write_index(index, idx_path)
|
| 276 |
+
np.save(
|
| 277 |
+
meta_path,
|
| 278 |
+
{
|
| 279 |
+
"chunks": np.array(all_chunks, dtype=object),
|
| 280 |
+
"sources": np.array(all_sources, dtype=object),
|
| 281 |
+
},
|
| 282 |
+
)
|
| 283 |
print("✓ Index saved successfully")
|
| 284 |
except Exception as e:
|
| 285 |
print(f"⚠️ Could not save index: {e}")
|
|
|
|
| 292 |
"""Retrieve relevant chunks for a query"""
|
| 293 |
if not query or not query.strip():
|
| 294 |
return []
|
| 295 |
+
|
| 296 |
if self.index is None or not self.initialized:
|
| 297 |
return []
|
| 298 |
+
|
| 299 |
try:
|
| 300 |
q_emb = self.embedder.encode([query], convert_to_numpy=True)
|
| 301 |
faiss.normalize_L2(q_emb)
|
| 302 |
scores, idxs = self.index.search(q_emb, min(top_k, len(self.chunks)))
|
| 303 |
+
|
| 304 |
+
results: List[Tuple[str, str, float]] = []
|
| 305 |
for score, idx in zip(scores[0], idxs[0]):
|
| 306 |
if idx == -1 or idx >= len(self.chunks):
|
| 307 |
continue
|
| 308 |
if score < SIM_THRESHOLD:
|
| 309 |
continue
|
| 310 |
+
results.append(
|
| 311 |
+
(self.chunks[idx], self.chunk_sources[idx], float(score))
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
return results
|
| 315 |
+
|
| 316 |
except Exception as e:
|
| 317 |
print(f"Retrieval error: {e}")
|
| 318 |
return []
|
|
|
|
| 321 |
"""Answer a question using RAG"""
|
| 322 |
if not self.initialized:
|
| 323 |
return "❌ Assistant not properly initialized. Please check the logs."
|
| 324 |
+
|
| 325 |
if not question or not question.strip():
|
| 326 |
return "Please ask a question."
|
| 327 |
+
|
| 328 |
if self.index is None:
|
| 329 |
return (
|
| 330 |
f"📚 Knowledge base is empty.\n\n"
|
| 331 |
f"Please add documents to: `{KB_DIR}`\n"
|
| 332 |
f"Supported formats: .txt, .md, .pdf, .docx"
|
| 333 |
)
|
| 334 |
+
|
| 335 |
# Retrieve relevant contexts
|
| 336 |
contexts = self.retrieve(question, top_k=3)
|
| 337 |
+
|
| 338 |
if not contexts:
|
| 339 |
return (
|
| 340 |
f"{NO_ANSWER_MSG}\n\n"
|
|
|
|
| 347 |
# Truncate context if too long (max 512 tokens for most QA models)
|
| 348 |
max_context_length = 2000 # characters, roughly 512 tokens
|
| 349 |
truncated_ctx = ctx[:max_context_length]
|
| 350 |
+
|
| 351 |
qa_input = {"question": question, "context": truncated_ctx}
|
| 352 |
+
|
| 353 |
try:
|
| 354 |
result = self.qa_pipeline(qa_input)
|
| 355 |
answer_text = result.get("answer", "").strip()
|
| 356 |
answer_score = result.get("score", 0.0)
|
| 357 |
+
|
| 358 |
if answer_text and answer_score > 0.01: # Minimum confidence threshold
|
| 359 |
answers.append((answer_text, source, answer_score, score))
|
| 360 |
+
|
| 361 |
except Exception as e:
|
| 362 |
print(f"QA error on context from {source}: {e}")
|
| 363 |
continue
|
|
|
|
| 393 |
# GRADIO CHAT
|
| 394 |
# -----------------------------
|
| 395 |
|
| 396 |
+
def rag_respond(message, history):
|
| 397 |
"""Handle chat messages"""
|
| 398 |
+
if not message or not str(message).strip():
|
| 399 |
return "Please enter a question."
|
| 400 |
+
|
| 401 |
+
return rag_index.answer(str(message))
|
| 402 |
|
| 403 |
|
| 404 |
# Build interface
|
| 405 |
description = WELCOME_MSG
|
| 406 |
if not rag_index.initialized or rag_index.index is None:
|
| 407 |
+
description += (
|
| 408 |
+
f"\n\n⚠️ **Note:** Knowledge base is empty. "
|
| 409 |
+
f"Add documents to `{KB_DIR}` and restart."
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
examples = [
|
| 413 |
+
qa.get("query")
|
| 414 |
+
for qa in CONFIG.get("quick_actions", [])
|
| 415 |
+
if qa.get("query")
|
| 416 |
+
]
|
| 417 |
if not examples and rag_index.initialized and rag_index.index is not None:
|
| 418 |
examples = [
|
| 419 |
"What is this document about?",
|
| 420 |
"Can you summarize the main points?",
|
| 421 |
+
"What are the key findings?",
|
| 422 |
]
|
| 423 |
|
| 424 |
chat = gr.ChatInterface(
|
| 425 |
fn=rag_respond,
|
| 426 |
title=CONFIG["client"]["name"],
|
| 427 |
description=description,
|
| 428 |
+
type="text", # FIX: use text so `message` is a string
|
| 429 |
examples=examples if examples else None,
|
| 430 |
cache_examples=False,
|
| 431 |
retry_btn="🔄 Retry",
|
|
|
|
| 435 |
|
| 436 |
if __name__ == "__main__":
|
| 437 |
# Launch with better settings for Hugging Face Spaces
|
| 438 |
+
port = int(os.environ.get("PORT", 7860)) # FIX: use HF port if provided
|
| 439 |
chat.launch(
|
| 440 |
server_name="0.0.0.0",
|
| 441 |
+
server_port=port,
|
| 442 |
+
share=False,
|
| 443 |
+
)
|