Spaces:
Runtime error
Runtime error
updated app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,49 @@ inputs = gr.inputs.Image()
|
|
12 |
outputs = gr.outputs.Image()
|
13 |
|
14 |
# inference fn
|
15 |
-
def predict(
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
gr.Interface(predict, inputs = inputs, outputs = outputs)
|
|
|
12 |
outputs = gr.outputs.Image()
|
13 |
|
14 |
# inference fn
|
15 |
+
def predict(inputs):
|
16 |
+
# convert img to numpy array, resize and normalize to make the prediction
|
17 |
+
img = np.array(inputs)
|
18 |
+
|
19 |
+
im = tf.image.resize(img, (128, 128))
|
20 |
+
im = tf.cast(im, tf.float32) / 255.0
|
21 |
+
pred_mask = model.predict(im[tf.newaxis, ...])
|
22 |
+
|
23 |
+
# take the best performing class for each pixel
|
24 |
+
# the output of argmax looks like this [[1, 2, 0], ...]
|
25 |
+
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
|
26 |
+
|
27 |
+
labels = []
|
28 |
+
|
29 |
+
# convert the prediction mask into binary masks for each class
|
30 |
+
binary_masks = {}
|
31 |
+
mask_codes = {}
|
32 |
+
|
33 |
+
# when we take tf.argmax() over pred_mask, it becomes a tensor object
|
34 |
+
# the shape becomes TensorShape object, looking like this TensorShape([128])
|
35 |
+
# we need to take get shape, convert to list and take the best one
|
36 |
+
|
37 |
+
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
|
38 |
+
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
|
39 |
|
40 |
+
for cls in range(pred_mask.shape[-1]):
|
41 |
+
|
42 |
+
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
|
43 |
+
|
44 |
+
for row in range(rows):
|
45 |
+
|
46 |
+
for col in range(cols):
|
47 |
+
|
48 |
+
if pred_mask_arg[0][row][col] == cls:
|
49 |
+
|
50 |
+
binary_masks[f"mask_{cls}"][row][col] = 1
|
51 |
+
else:
|
52 |
+
binary_masks[f"mask_{cls}"][row][col] = 0
|
53 |
+
|
54 |
+
mask = binary_masks[f"mask_{cls}"]
|
55 |
+
mask *= 255
|
56 |
+
img = Image.fromarray(mask.astype(np.int8), mode="L")
|
57 |
+
return img
|
58 |
+
|
59 |
|
60 |
+
gr.Interface(predict, inputs = inputs, outputs = outputs).launch()
|