Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.llms import CTransformers | |
| # from langchain.chains import RetrievalQA | |
| # from langchain import PromptTemplate | |
| DB_FAISS_PATH = "mylib/vector_db" | |
| # Initialize embeddings and database outside of functions | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"} | |
| ) | |
| db = FAISS.load_local(DB_FAISS_PATH, embeddings) | |
| # Initialize the LLM model once | |
| llm = CTransformers( | |
| model="TheBloke/Llama-2-7B-Chat-GGML", | |
| # model= "meta-llama/Llama-2-7b-chat-hf". | |
| model_type="llama", | |
| max_new_tokens=512, | |
| temperature=0.5, | |
| ) | |
| # Initialize the QA chain once | |
| # qa = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=db.as_retriever(search_kwargs={'k': 10}), return_source_documents=True) | |
| # retriever = db.as_retriever(search_kwargs={"k": 10}) | |
| def final_result(query): | |
| docs_and_scores = db.similarity_search_with_score(query, k=10) | |
| # response = retriever.get_relevant_documents(query) | |
| return docs_and_scores | |
| if __name__ == "__main__": | |
| while True: | |
| user_query = input( | |
| "Please enter Retailer, Brand, or Category (type 'exit' to quit): " | |
| ) | |
| if user_query == "exit": | |
| break | |
| llm_response = final_result(user_query) | |
| print(llm_response) | |