NimaBoscarino's picture
Add initial instructional copy
f62b8c4
raw
history blame
4.51 kB
import gradio as gr
from huggingface_hub import ModelCard
from compliance_checks import (
ComplianceSuite,
ComplianceCheck,
IntendedPurposeCheck,
GeneralLimitationsCheck,
ComputationalRequirementsCheck,
)
checks = [
IntendedPurposeCheck(),
GeneralLimitationsCheck(),
ComputationalRequirementsCheck(),
]
suite = ComplianceSuite(checks=checks)
def status_emoji(status: bool):
return "✅" if status else "🛑"
def run_compliance_check(model_card: str):
results = suite.run(model_card)
return [
*[gr.Accordion.update(label=f"{r.name} - {status_emoji(r.status)}", open=not r.status) for r in results],
*[gr.Markdown.update(value=r.to_string()) for r in results],
]
def fetch_and_run_compliance_check(model_id: str):
model_card = ModelCard.load(repo_id_or_path=model_id).content
return run_compliance_check(model_card=model_card)
def compliance_result(compliance_check: ComplianceCheck):
accordion = gr.Accordion(label=f"{compliance_check.name}", open=False)
with accordion:
description = gr.Markdown("Run an evaluation to see results...")
return accordion, description
def read_file(file_obj):
with open(file_obj.name) as f:
return f.read()
model_card_box = gr.TextArea(label="Model Card")
with gr.Blocks(css="""\
#reverse-row {
flex-direction: row-reverse;
}
#file-upload .boundedheight {
max-height: 100px;
}
code {
overflow: scroll;
}
""") as demo:
gr.Markdown("""\
# RegCheck AI
This Space uses [model cards’](https://huggingface.co/docs/hub/model-cards) information as a source of regulatory \
compliance with some provisions of the proposed \
[EU AI Act](https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206). For the moment being, the \
demo is a **prototype** limited to specific provisions of Article 13 of the AI Act, related to “Transparency and \
provision of information to users”. **(DISCLAIMER: this is NOT a commercial or legal advice-related product)**
To check a model card, first load it by doing any one of the following:
- If the model is on the Hugging Face Hub, enter its model ID and click "Load model card".
- If you have the model card on your computer as a Markdown file, select the "Upload your own card" tab and click \
"Upload a Markdown file".
- Paste your model card's text directly into the "Model Card" text area.
Once your card is loaded, click "Run validation checks" to receive your results.
""")
with gr.Row(elem_id="reverse-row"):
with gr.Column():
submit_markdown = gr.Button(value="Run validation checks")
with gr.Tab(label="Results"):
with gr.Column():
compliance_results = [compliance_result(c) for c in suite.checks]
compliance_accordions = [c[0] for c in compliance_results]
compliance_descriptions = [c[1] for c in compliance_results]
with gr.Column():
with gr.Tab(label="Load a card from the 🤗 Hugging Face Hub"):
model_id_search = gr.Text(label="Model ID")
gr.Examples(
examples=[
"bigscience/bloom",
"roberta-base",
"openai/clip-vit-base-patch32",
"distilbert-base-cased-distilled-squad",
],
fn=lambda x: ModelCard.load(repo_id_or_path=x).content,
inputs=[model_id_search],
outputs=[model_card_box]
# cache_examples=True, # TODO: Why does this break the app?
)
submit_model_search = gr.Button(value="Load model card")
with gr.Tab(label="Upload your own card"):
file = gr.UploadButton(label="Upload a Markdown file", elem_id="file-upload")
file.upload(
fn=read_file,
inputs=[file],
outputs=[model_card_box]
)
model_card_box.render()
submit_model_search.click(
fn=lambda x: ModelCard.load(repo_id_or_path=x).content,
inputs=[model_id_search],
outputs=[model_card_box]
)
submit_markdown.click(
fn=run_compliance_check,
inputs=[model_card_box],
outputs=[*compliance_accordions, *compliance_descriptions]
)
demo.launch()