soarhigh commited on
Commit
50361dc
ยท
1 Parent(s): 4cd3482

accept multiple articles

Browse files
Files changed (1) hide show
  1. app.py +22 -12
app.py CHANGED
@@ -1,10 +1,11 @@
 
1
  import gradio as gr
2
  import torch
3
- from nextus_regressor_class import *
 
4
  import nltk
5
  from pprint import pprint
6
  import pandas as pd
7
-
8
  model = NextUsRegressor()
9
  model.load_state_dict(torch.load("./nextus_regressor1012.pt"))
10
  model.eval()
@@ -40,26 +41,35 @@ def shap(txt, tok_level):
40
  # labels = ["+" if s < -1.0*threshold "-" elif s > threshold else " " for s in shapss]
41
  # print(len(tokens), len(labels))
42
  # print(list(zip(tokens, labels)))
43
- # pprint(list(zip(tokens, shapss)))
44
  # return str(list(zip(tokens, labels)))
45
- return list(zip(tokens, labels))
 
 
 
46
  # return txt
47
 
 
48
  def parse_file_input(f):
 
49
  all_articles = list()
50
- for one_file in f:
51
- if ".csv" in f:
52
- all_articles += pd.read_csv(f).iloc[:, 0].to_list()
53
- elif ".xls" in f:
54
- all_articles += pd.read_excel(f).iloc[:, 0].to_list()
55
- else:
56
- pass
 
 
 
 
57
  scores = model(all_articles)
58
  return scores
59
 
60
  demo = gr.Interface(parse_file_input,
61
  [
62
- gr.File(file_count="single", file_types=[".csv", ".xls", ".xlsx"], label="๊ธฐ์‚ฌ ํŒŒ์ผ(csv/excel)์„ ์—…๋กœ๋“œํ•˜์„ธ์š”")
63
  #gr.Textbox(label="๊ธฐ์‚ฌ", lines=30, placeholder="๊ธฐ์‚ฌ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”."),
64
  # gr.Radio(choices=["sentence", "word"], label="ํ•ด์„ค ํ‘œ์‹œ ๋‹จ์œ„", value="sentence", info="๋ฌธ์žฅ ๋‹จ์œ„์˜ ํ•ด์„ค์€ sentence๋ฅผ, ๋‹จ์–ด ๋‹จ์œ„์˜ ํ•ด์„ค์€ word๋ฅผ ์„ ํƒํ•˜์„ธ์š”.")
65
  ],
 
1
+ import io
2
  import gradio as gr
3
  import torch
4
+ # from nextus_regressor_class import *
5
+ from nextus_regressor_class1027 import *
6
  import nltk
7
  from pprint import pprint
8
  import pandas as pd
 
9
  model = NextUsRegressor()
10
  model.load_state_dict(torch.load("./nextus_regressor1012.pt"))
11
  model.eval()
 
41
  # labels = ["+" if s < -1.0*threshold "-" elif s > threshold else " " for s in shapss]
42
  # print(len(tokens), len(labels))
43
  # print(list(zip(tokens, labels)))
44
+ pprint(list(zip(tokens, shapss)))
45
  # return str(list(zip(tokens, labels)))
46
+ largest_shap = torch.max(y_offs - y_pred).item()
47
+ largest_shap_span = tokens[torch.argmax(y_offs - y_pred).item()]
48
+ explanation = "๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ ํ…์ŠคํŠธ๋Š”\n'"+ largest_shap_span+ "'\n์ด๋ฉฐ, ํ•ด๋‹น ํ…์ŠคํŠธ๊ฐ€ ์—†์„ ๊ฒฝ์šฐ Slant ์Šค์ฝ”์–ด\n" + str(round(y_pred.item(), 4))+ "\n์—์„œ\n"+ str(round(largest_shap,4))+ "\n๋งŒํผ ๋ฒ—์–ด๋‚ฉ๋‹ˆ๋‹ค."
49
+ return list(zip(tokens, labels)), explanation
50
  # return txt
51
 
52
+
53
  def parse_file_input(f):
54
+ # print(f, type(f))
55
  all_articles = list()
56
+
57
+ # with open(f, "r") as fh:
58
+ if ".csv" in f.name:
59
+
60
+ all_articles += pd.read_csv(f.name).iloc[:, 0].to_list()
61
+ elif ".xls" in f.name:
62
+ all_articles += pd.read_excel(f.name).iloc[:, 0].to_list()
63
+ else:
64
+ pass
65
+ # print(len(all_articles))
66
+ # print(all_articles)
67
  scores = model(all_articles)
68
  return scores
69
 
70
  demo = gr.Interface(parse_file_input,
71
  [
72
+ gr.File(file_count="single", file_types=[".csv", ".xls", ".xlsx"], type="file", label="๊ธฐ์‚ฌ ํŒŒ์ผ(csv/excel)์„ ์—…๋กœ๋“œํ•˜์„ธ์š”")
73
  #gr.Textbox(label="๊ธฐ์‚ฌ", lines=30, placeholder="๊ธฐ์‚ฌ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”."),
74
  # gr.Radio(choices=["sentence", "word"], label="ํ•ด์„ค ํ‘œ์‹œ ๋‹จ์œ„", value="sentence", info="๋ฌธ์žฅ ๋‹จ์œ„์˜ ํ•ด์„ค์€ sentence๋ฅผ, ๋‹จ์–ด ๋‹จ์œ„์˜ ํ•ด์„ค์€ word๋ฅผ ์„ ํƒํ•˜์„ธ์š”.")
75
  ],