medical-report-analyzer / backend /simple_test_server.py
snikhilesh's picture
Deploy simple_test_server.py to backend/ directory
db6628e verified
"""
Minimal Test Server - No Heavy Dependencies
Just monitoring infrastructure for load testing
"""
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict, Any
from datetime import datetime, timedelta
import uuid
import logging
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(title="Medical AI Platform - Test Server", version="2.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Simple in-memory monitoring
class SimpleMonitoring:
def __init__(self):
self.start_time = datetime.utcnow()
self.request_count = 0
self.error_count = 0
self.latencies = []
self.cache_hits = 0
self.cache_misses = 0
self.cache_entries = 0
def track_request(self, latency_ms: float, success: bool):
self.request_count += 1
self.latencies.append(latency_ms)
if not success:
self.error_count += 1
def get_stats(self):
uptime = (datetime.utcnow() - self.start_time).total_seconds()
error_rate = self.error_count / max(self.request_count, 1)
avg_latency = sum(self.latencies) / max(len(self.latencies), 1)
return {
"status": "operational" if error_rate < 0.05 else "degraded",
"uptime_seconds": uptime,
"uptime_human": f"{int(uptime//3600)}h {int((uptime%3600)//60)}m",
"total_requests": self.request_count,
"error_count": self.error_count,
"error_rate": error_rate,
"error_threshold": 0.05,
"avg_latency_ms": avg_latency,
"cache": {
"hits": self.cache_hits,
"misses": self.cache_misses,
"hit_rate": self.cache_hits / max(self.cache_hits + self.cache_misses, 1),
"total_entries": self.cache_entries,
"memory_usage_mb": self.cache_entries * 0.1
}
}
monitoring = SimpleMonitoring()
@app.middleware("http")
async def monitoring_middleware(request: Request, call_next):
start_time = time.time()
try:
response = await call_next(request)
latency_ms = (time.time() - start_time) * 1000
monitoring.track_request(latency_ms, response.status_code < 400)
return response
except Exception as e:
latency_ms = (time.time() - start_time) * 1000
monitoring.track_request(latency_ms, False)
raise
@app.get("/health")
async def health_check():
stats = monitoring.get_stats()
return {
"status": stats["status"],
"components": {"monitoring": "active"},
"monitoring": {
"uptime_seconds": stats["uptime_seconds"],
"error_rate": stats["error_rate"],
"active_alerts": 0,
"critical_alerts": 0
},
"timestamp": datetime.utcnow().isoformat()
}
@app.get("/health/dashboard")
async def get_health_dashboard():
stats = monitoring.get_stats()
# Simulate some cache activity
if monitoring.request_count % 3 == 0:
monitoring.cache_hits += 1
else:
monitoring.cache_misses += 1
monitoring.cache_entries += 1
return {
"status": stats["status"],
"timestamp": datetime.utcnow().isoformat(),
"system": {
"uptime_seconds": stats["uptime_seconds"],
"uptime_human": stats["uptime_human"],
"error_rate": stats["error_rate"],
"total_requests": stats["total_requests"],
"error_threshold": 0.05,
"status": stats["status"]
},
"pipeline": {
"total_jobs_processed": 0,
"completed_jobs": 0,
"failed_jobs": 0,
"processing_jobs": 0,
"success_rate": 1.0
},
"models": {
"total_registered": 6,
"performance": {
"bio_clinical_bert": {
"version": "1.0.0",
"total_inferences": 0,
"avg_latency_ms": 125.4,
"error_rate": 0.01,
"last_used": "2025-10-29T15:00:00Z"
}
}
},
"synthesis": {
"total_syntheses": 0,
"avg_confidence": 0.87,
"requiring_review": 0,
"avg_processing_time_ms": 850.5
},
"cache": {
"total_entries": stats["cache"]["total_entries"],
"hits": stats["cache"]["hits"],
"misses": stats["cache"]["misses"],
"hit_rate": stats["cache"]["hit_rate"],
"evictions": 0,
"memory_usage_mb": stats["cache"]["memory_usage_mb"],
"avg_retrieval_time_ms": 0.5,
"cache_efficiency": stats["cache"]["hit_rate"] * 100
},
"alerts": {
"active_count": 0,
"critical_count": 0,
"recent": []
},
"compliance": {
"hipaa_compliant": True,
"gdpr_compliant": True,
"audit_logging_active": True,
"phi_removal_active": True,
"encryption_enabled": True
},
"components": {
"monitoring_system": "operational",
"versioning_system": "operational",
"logging_system": "operational",
"compliance_reporting": "operational",
"cache_service": "operational"
}
}
@app.get("/admin/cache/statistics")
async def cache_statistics():
stats = monitoring.get_stats()
return {
"statistics": stats["cache"],
"recommendations": ["Cache performing within normal parameters."],
"timestamp": datetime.utcnow().isoformat()
}
@app.get("/admin/metrics")
async def admin_metrics():
stats = monitoring.get_stats()
return {
"system": stats,
"timestamp": datetime.utcnow().isoformat()
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="warning")