mini-omni-demo / litgpt /tokenizer.py
gpt-omni's picture
init
5e4b316 verified
raw
history blame
5.27 kB
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
import json
from pathlib import Path
from typing import Optional, Union
import torch
class Tokenizer:
def __init__(self, checkpoint_dir: Union[Path, str]) -> None:
checkpoint_dir = Path(checkpoint_dir)
if not checkpoint_dir.exists():
raise NotADirectoryError(
f"The checkpoint directory does not exist: {str(checkpoint_dir)}"
)
self.use_bos = self.check_if_bos_token_used(checkpoint_dir)
self.bos_id = None
self.eos_id = None
# some checkpoints have both files, `.json` takes precedence
if (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file():
from tokenizers import Tokenizer as HFTokenizer
self.processor = HFTokenizer.from_file(str(vocabulary_path))
self.backend = "huggingface"
if (
special_tokens_path := checkpoint_dir / "tokenizer_config.json"
).is_file():
with open(special_tokens_path, encoding="utf-8") as fp:
config = json.load(fp)
bos_token = config.get("bos_token")
eos_token = config.get("eos_token")
if bos_token is not None and isinstance(bos_token, dict):
bos_token = bos_token.get("content")
if eos_token is not None and isinstance(eos_token, dict):
eos_token = eos_token.get("content")
self.bos_id = (
self.token_to_id(bos_token) if bos_token is not None else None
)
self.eos_id = (
self.token_to_id(eos_token) if eos_token is not None else None
)
if (
special_tokens_path := checkpoint_dir / "generation_config.json"
).is_file():
with open(special_tokens_path, encoding="utf-8") as fp:
config = json.load(fp)
if self.bos_id is None:
self.bos_id = config.get("bos_token_id")
if self.eos_id is None:
self.eos_id = config.get("eos_token_id")
elif (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file():
from sentencepiece import SentencePieceProcessor
self.processor = SentencePieceProcessor(model_file=str(vocabulary_path))
self.backend = "sentencepiece"
self.bos_id = self.processor.bos_id()
self.eos_id = self.processor.eos_id()
else:
raise NotImplementedError
@property
def vocab_size(self) -> int:
if self.backend == "huggingface":
return self.processor.get_vocab_size(with_added_tokens=False)
if self.backend == "sentencepiece":
return self.processor.vocab_size()
raise RuntimeError
def token_to_id(self, token: str) -> int:
if self.backend == "huggingface":
id_ = self.processor.token_to_id(token)
elif self.backend == "sentencepiece":
id_ = self.processor.piece_to_id(token)
else:
raise RuntimeError
if id_ is None:
raise ValueError(f"token {token!r} not found in the collection.")
return id_
def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool:
if not (
tokenizer_config_path := checkpoint_dir / "tokenizer_config.json"
).is_file():
return False
with open(tokenizer_config_path, encoding="utf-8") as fp:
config = json.load(fp)
if "add_bos_token" in config:
return config["add_bos_token"]
# if `add_bos_token` isn't in the config file, but LLaMA tokenizer is used - return True.
# ex: https://huggingface.co/stabilityai/StableBeluga2/blob/main/tokenizer_config.json#L2
return config.get("tokenizer_class") == "LlamaTokenizer"
def encode(
self,
string: str,
device: Optional[torch.device] = None,
bos: Optional[bool] = None,
eos: bool = False,
max_length: int = -1,
) -> torch.Tensor:
if self.backend == "huggingface":
tokens = self.processor.encode(string).ids
elif self.backend == "sentencepiece":
tokens = self.processor.encode(string)
else:
raise RuntimeError
if bos or (bos is None and self.use_bos):
bos_id = self.bos_id
if bos_id is None:
raise NotImplementedError(
"This tokenizer does not have a defined a bos token"
)
if tokens[0] != bos_id:
tokens = [bos_id] + tokens
if tokens is None:
raise ValueError("`tokens` is None")
if eos and (not tokens or tokens[-1] != self.eos_id):
tokens = tokens + [self.eos_id]
if max_length > 0:
tokens = tokens[:max_length]
return torch.tensor(tokens, dtype=torch.int, device=device)
def decode(self, tensor: torch.Tensor) -> str:
tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist()
return self.processor.decode(tokens)