|
import math |
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.model_zoo as model_zoo |
|
import torch.utils.checkpoint as cp |
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"3x3 convolution with padding" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, with_cp=False): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv1x1(inplanes, planes) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes, stride) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.with_cp = with_cp |
|
|
|
def forward(self, x): |
|
def _inner_forward(x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
|
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, output_channels=512): |
|
super(ResNet, self).__init__() |
|
channels = [output_channels//(2**i) for i in reversed(range(5))] |
|
self.inplanes = channels[0] |
|
self.conv1 = nn.Conv2d(3, channels[0], kernel_size=3, stride=1, padding=1, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(channels[0]) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer(block, channels[0], layers[0], stride=2) |
|
self.layer2 = self._make_layer(block, channels[1], layers[1], stride=1) |
|
self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, channels[3], layers[3], stride=1) |
|
self.layer5 = self._make_layer(block, channels[4], layers[4], stride=1) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x, extra_feats=None): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
if extra_feats is not None: |
|
if extra_feats[0].shape[1]>0: |
|
x = x+F.interpolate(extra_feats[0], x.shape[2:], mode='nearest') |
|
x = self.layer1(x) |
|
if extra_feats is not None: |
|
if extra_feats[1].shape[1]>0: |
|
x = x+F.interpolate(extra_feats[1], x.shape[2:], mode='nearest') |
|
x = self.layer2(x) |
|
if extra_feats is not None: |
|
if extra_feats[2].shape[1]>0: |
|
x = x+F.interpolate(extra_feats[2], x.shape[2:], mode='nearest') |
|
x = self.layer3(x) |
|
if extra_feats is not None: |
|
if extra_feats[3].shape[1]>0: |
|
x = x+F.interpolate(extra_feats[3], x.shape[2:], mode='nearest') |
|
x = self.layer4(x) |
|
if extra_feats is not None: |
|
if extra_feats[4].shape[1]>0: |
|
x = x+F.interpolate(extra_feats[4], x.shape[2:], mode='nearest') |
|
x = self.layer5(x) |
|
if extra_feats is not None: |
|
if extra_feats[5].shape[1]>0: |
|
x = x+F.interpolate(extra_feats[5], x.shape[2:], mode='nearest') |
|
return x |
|
|
|
def resnet45(alpha_d, output_channels=512): |
|
layers = [int(round(x*alpha_d)) for x in [3, 4, 6, 6, 3]] |
|
return ResNet(BasicBlock, layers, output_channels=output_channels) |
|
|