Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
from .transformer import PositionalEncoding | |
class Attention(nn.Module): | |
def __init__(self, in_channels=512, max_length=25, n_feature=256): | |
super().__init__() | |
self.max_length = max_length | |
self.f0_embedding = nn.Embedding(max_length, in_channels) | |
self.w0 = nn.Linear(max_length, n_feature) | |
self.wv = nn.Linear(in_channels, in_channels) | |
self.we = nn.Linear(in_channels, max_length) | |
self.active = nn.Tanh() | |
self.softmax = nn.Softmax(dim=2) | |
def forward(self, enc_output): | |
enc_output = enc_output.permute(0, 2, 3, 1).flatten(1, 2) | |
reading_order = torch.arange(self.max_length, dtype=torch.long, device=enc_output.device) | |
reading_order = reading_order.unsqueeze(0).expand(enc_output.size(0), -1) # (S,) -> (B, S) | |
reading_order_embed = self.f0_embedding(reading_order) # b,25,512 | |
t = self.w0(reading_order_embed.permute(0, 2, 1)) # b,512,256 | |
t = self.active(t.permute(0, 2, 1) + self.wv(enc_output)) # b,256,512 | |
attn = self.we(t) # b,256,25 | |
attn = self.softmax(attn.permute(0, 2, 1)) # b,25,256 | |
g_output = torch.bmm(attn, enc_output) # b,25,512 | |
return g_output, attn.view(*attn.shape[:2], 8, 32) | |
def encoder_layer(in_c, out_c, k=3, s=2, p=1): | |
return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p), | |
nn.BatchNorm2d(out_c), | |
nn.ReLU(True)) | |
def decoder_layer(in_c, out_c, k=3, s=1, p=1, mode='nearest', scale_factor=None, size=None): | |
align_corners = None if mode=='nearest' else True | |
return nn.Sequential(nn.Upsample(size=size, scale_factor=scale_factor, | |
mode=mode, align_corners=align_corners), | |
nn.Conv2d(in_c, out_c, k, s, p), | |
nn.BatchNorm2d(out_c), | |
nn.ReLU(True)) | |
class PositionAttention(nn.Module): | |
def __init__(self, max_length, in_channels=512, num_channels=64, | |
h=8, w=32, mode='nearest', **kwargs): | |
super().__init__() | |
self.max_length = max_length | |
self.k_encoder = nn.Sequential( | |
encoder_layer(in_channels, num_channels, s=(1, 2)), | |
encoder_layer(num_channels, num_channels, s=(2, 2)), | |
encoder_layer(num_channels, num_channels, s=(2, 2)), | |
encoder_layer(num_channels, num_channels, s=(2, 2)) | |
) | |
self.k_decoder = nn.Sequential( | |
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode), | |
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode), | |
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode), | |
decoder_layer(num_channels, in_channels, size=(h, w), mode=mode) | |
) | |
self.pos_encoder = PositionalEncoding(in_channels, dropout=0, max_len=max_length) | |
self.project = nn.Linear(in_channels, in_channels) | |
def forward(self, x): | |
N, E, H, W = x.size() | |
k, v = x, x # (N, E, H, W) | |
# calculate key vector | |
features = [] | |
for i in range(0, len(self.k_encoder)): | |
k = self.k_encoder[i](k) | |
features.append(k) | |
for i in range(0, len(self.k_decoder) - 1): | |
k = self.k_decoder[i](k) | |
k = k + features[len(self.k_decoder) - 2 - i] | |
k = self.k_decoder[-1](k) | |
# calculate query vector | |
# TODO q=f(q,k) | |
zeros = x.new_zeros((self.max_length, N, E)) # (T, N, E) | |
q = self.pos_encoder(zeros) # (T, N, E) | |
q = q.permute(1, 0, 2) # (N, T, E) | |
q = self.project(q) # (N, T, E) | |
# calculate attention | |
attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W)) | |
attn_scores = attn_scores / (E ** 0.5) | |
attn_scores = torch.softmax(attn_scores, dim=-1) | |
v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E) | |
attn_vecs = torch.bmm(attn_scores, v) # (N, T, E) | |
return attn_vecs, attn_scores.view(N, -1, H, W) |