Spaces:
Sleeping
Sleeping
Shiyu Zhao
commited on
Commit
•
c8373c1
1
Parent(s):
1d08545
Update space
Browse files
app.py
CHANGED
@@ -1,204 +1,507 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
|
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
with gr.Row():
|
192 |
-
with gr.
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from datetime import datetime
|
7 |
+
import json
|
8 |
+
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed
|
11 |
+
|
12 |
+
from stark_qa import load_qa
|
13 |
+
from stark_qa.evaluator import Evaluator
|
14 |
+
|
15 |
+
|
16 |
+
def process_single_instance(args):
|
17 |
+
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
|
18 |
+
query, query_id, answer_ids, meta_info = qa_dataset[idx]
|
19 |
+
|
20 |
+
try:
|
21 |
+
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
|
22 |
+
except IndexError:
|
23 |
+
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
|
24 |
+
except Exception as e:
|
25 |
+
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')
|
26 |
+
|
27 |
+
if isinstance(pred_rank, str):
|
28 |
+
try:
|
29 |
+
pred_rank = eval(pred_rank)
|
30 |
+
except SyntaxError as e:
|
31 |
+
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
|
32 |
+
|
33 |
+
if not isinstance(pred_rank, list):
|
34 |
+
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')
|
35 |
+
|
36 |
+
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
|
37 |
+
answer_ids = torch.LongTensor(answer_ids)
|
38 |
+
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
|
39 |
+
|
40 |
+
result["idx"], result["query_id"] = idx, query_id
|
41 |
+
return result
|
42 |
+
|
43 |
+
|
44 |
+
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
|
45 |
+
candidate_ids_dict = {
|
46 |
+
'amazon': [i for i in range(957192)],
|
47 |
+
'mag': [i for i in range(1172724, 1872968)],
|
48 |
+
'prime': [i for i in range(129375)]
|
49 |
+
}
|
50 |
+
try:
|
51 |
+
eval_csv = pd.read_csv(csv_path)
|
52 |
+
if 'query_id' not in eval_csv.columns:
|
53 |
+
raise ValueError('No `query_id` column found in the submitted csv.')
|
54 |
+
if 'pred_rank' not in eval_csv.columns:
|
55 |
+
raise ValueError('No `pred_rank` column found in the submitted csv.')
|
56 |
+
|
57 |
+
eval_csv = eval_csv[['query_id', 'pred_rank']]
|
58 |
+
|
59 |
+
if dataset not in candidate_ids_dict:
|
60 |
+
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
|
61 |
+
if split not in ['test', 'test-0.1', 'human_generated_eval']:
|
62 |
+
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
|
63 |
+
|
64 |
+
evaluator = Evaluator(candidate_ids_dict[dataset])
|
65 |
+
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
|
66 |
+
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
|
67 |
+
split_idx = qa_dataset.get_idx_split()
|
68 |
+
all_indices = split_idx[split].tolist()
|
69 |
+
|
70 |
+
results_list = []
|
71 |
+
query_ids = []
|
72 |
+
|
73 |
+
# Prepare args for each worker
|
74 |
+
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
|
75 |
+
|
76 |
+
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
77 |
+
futures = [executor.submit(process_single_instance, arg) for arg in args]
|
78 |
+
for future in tqdm(as_completed(futures), total=len(futures)):
|
79 |
+
result = future.result() # This will raise an error if the worker encountered one
|
80 |
+
results_list.append(result)
|
81 |
+
query_ids.append(result['query_id'])
|
82 |
+
|
83 |
+
# Concatenate results and compute final metrics
|
84 |
+
eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True)
|
85 |
+
final_results = {
|
86 |
+
metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
|
87 |
+
}
|
88 |
+
return final_results
|
89 |
+
|
90 |
+
except pd.errors.EmptyDataError:
|
91 |
+
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
|
92 |
+
except FileNotFoundError:
|
93 |
+
return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
|
94 |
+
except Exception as error:
|
95 |
+
return f"{error}"
|
96 |
+
|
97 |
+
|
98 |
+
# Data dictionaries for leaderboard
|
99 |
+
data_synthesized_full = {
|
100 |
+
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
|
101 |
+
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
|
102 |
+
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
|
103 |
+
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
|
104 |
+
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
|
105 |
+
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
|
106 |
+
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
|
107 |
+
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
|
108 |
+
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
|
109 |
+
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
|
110 |
+
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
|
111 |
+
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
|
112 |
+
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
|
113 |
+
}
|
114 |
+
|
115 |
+
data_synthesized_10 = {
|
116 |
+
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
|
117 |
+
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
|
118 |
+
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
|
119 |
+
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
|
120 |
+
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
|
121 |
+
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
|
122 |
+
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
|
123 |
+
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
|
124 |
+
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
|
125 |
+
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
|
126 |
+
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
|
127 |
+
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
|
128 |
+
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
|
129 |
+
}
|
130 |
+
|
131 |
+
data_human_generated = {
|
132 |
+
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
|
133 |
+
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
|
134 |
+
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
|
135 |
+
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
|
136 |
+
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
|
137 |
+
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
|
138 |
+
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
|
139 |
+
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
|
140 |
+
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
|
141 |
+
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
|
142 |
+
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
|
143 |
+
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
|
144 |
+
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
|
145 |
+
}
|
146 |
+
|
147 |
+
# Initialize DataFrames
|
148 |
+
df_synthesized_full = pd.DataFrame(data_synthesized_full)
|
149 |
+
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
|
150 |
+
df_human_generated = pd.DataFrame(data_human_generated)
|
151 |
+
|
152 |
+
# Model type definitions
|
153 |
+
model_types = {
|
154 |
+
'Sparse Retriever': ['BM25'],
|
155 |
+
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
|
156 |
+
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
|
157 |
+
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
|
158 |
+
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
|
159 |
+
}
|
160 |
+
|
161 |
+
# Submission form validation functions
|
162 |
+
def validate_email(email_str):
|
163 |
+
"""Validate email format(s)"""
|
164 |
+
emails = [e.strip() for e in email_str.split(';')]
|
165 |
+
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
|
166 |
+
return all(email_pattern.match(email) for email in emails)
|
167 |
+
|
168 |
+
def validate_github_url(url):
|
169 |
+
"""Validate GitHub URL format"""
|
170 |
+
github_pattern = re.compile(
|
171 |
+
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
|
172 |
)
|
173 |
+
return bool(github_pattern.match(url))
|
174 |
|
175 |
+
def validate_csv(file_obj):
|
176 |
+
"""Validate CSV file format and content"""
|
177 |
+
try:
|
178 |
+
df = pd.read_csv(file_obj.name)
|
179 |
+
required_cols = ['query_id', 'pred_rank']
|
180 |
+
|
181 |
+
if not all(col in df.columns for col in required_cols):
|
182 |
+
return False, "CSV must contain 'query_id' and 'pred_rank' columns"
|
183 |
+
|
184 |
+
try:
|
185 |
+
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
|
186 |
+
if not isinstance(first_rank, list) or len(first_rank) < 20:
|
187 |
+
return False, "pred_rank must be a list with at least 20 candidates"
|
188 |
+
except:
|
189 |
+
return False, "Invalid pred_rank format"
|
190 |
+
|
191 |
+
return True, "Valid CSV file"
|
192 |
+
except Exception as e:
|
193 |
+
return False, f"Error processing CSV: {str(e)}"
|
194 |
|
195 |
+
def sanitize_name(name):
|
196 |
+
"""Sanitize name for file system use"""
|
197 |
+
return re.sub(r'[^a-zA-Z0-9]', '_', name)
|
198 |
+
|
199 |
+
def save_submission(submission_data, csv_file):
|
200 |
+
"""
|
201 |
+
Save submission data and CSV file using model_name_team_name format
|
202 |
+
|
203 |
+
Args:
|
204 |
+
submission_data (dict): Metadata and results for the submission
|
205 |
+
csv_file: The uploaded CSV file object
|
206 |
+
"""
|
207 |
+
# Create folder name from model name and team name
|
208 |
+
model_name_clean = sanitize_name(submission_data['method_name'])
|
209 |
+
team_name_clean = sanitize_name(submission_data['team_name'])
|
210 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
211 |
+
|
212 |
+
# Create folder name: model_name_team_name
|
213 |
+
folder_name = f"{model_name_clean}_{team_name_clean}"
|
214 |
+
submission_id = f"{folder_name}_{timestamp}"
|
215 |
+
|
216 |
+
# Create submission directory structure
|
217 |
+
base_dir = "submissions"
|
218 |
+
submission_dir = os.path.join(base_dir, folder_name)
|
219 |
+
os.makedirs(submission_dir, exist_ok=True)
|
220 |
+
|
221 |
+
# Save CSV file with timestamp to allow multiple submissions
|
222 |
+
csv_filename = f"predictions_{timestamp}.csv"
|
223 |
+
csv_path = os.path.join(submission_dir, csv_filename)
|
224 |
+
if hasattr(csv_file, 'name'):
|
225 |
+
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
|
226 |
+
target.write(source.read())
|
227 |
+
|
228 |
+
# Add file paths to submission data
|
229 |
+
submission_data.update({
|
230 |
+
"csv_path": csv_path,
|
231 |
+
"submission_id": submission_id,
|
232 |
+
"folder_name": folder_name
|
233 |
+
})
|
234 |
+
|
235 |
+
# Save metadata as JSON with timestamp
|
236 |
+
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
|
237 |
+
with open(metadata_path, 'w') as f:
|
238 |
+
json.dump(submission_data, f, indent=4)
|
239 |
+
|
240 |
+
# Update latest.json to track most recent submission
|
241 |
+
latest_path = os.path.join(submission_dir, "latest.json")
|
242 |
+
with open(latest_path, 'w') as f:
|
243 |
+
json.dump({
|
244 |
+
"latest_submission": timestamp,
|
245 |
+
"status": "pending_review",
|
246 |
+
"method_name": submission_data['method_name']
|
247 |
+
}, f, indent=4)
|
248 |
+
|
249 |
+
return submission_id
|
250 |
+
|
251 |
+
def update_leaderboard_data(submission_data):
|
252 |
+
"""
|
253 |
+
Update leaderboard data with new submission results
|
254 |
+
Only uses model name in the displayed table
|
255 |
+
"""
|
256 |
+
global df_synthesized_full, df_synthesized_10, df_human_generated
|
257 |
+
|
258 |
+
# Determine which DataFrame to update based on split
|
259 |
+
split_to_df = {
|
260 |
+
'test': df_synthesized_full,
|
261 |
+
'test-0.1': df_synthesized_10,
|
262 |
+
'human_generated_eval': df_human_generated
|
263 |
+
}
|
264 |
+
|
265 |
+
df_to_update = split_to_df[submission_data['split']]
|
266 |
+
|
267 |
+
# Prepare new row data
|
268 |
+
new_row = {
|
269 |
+
'Method': submission_data['method_name'], # Only use method name in table
|
270 |
+
f'STARK-{submission_data["dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
|
271 |
+
f'STARK-{submission_data["dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
|
272 |
+
f'STARK-{submission_data["dataset"].upper()}_R@20': submission_data['results']['recall@20'],
|
273 |
+
f'STARK-{submission_data["dataset"].upper()}_MRR': submission_data['results']['mrr']
|
274 |
+
}
|
275 |
+
|
276 |
+
# Check if method already exists
|
277 |
+
method_mask = df_to_update['Method'] == submission_data['method_name']
|
278 |
+
if method_mask.any():
|
279 |
+
# Update existing row
|
280 |
+
for col in new_row:
|
281 |
+
df_to_update.loc[method_mask, col] = new_row[col]
|
282 |
+
else:
|
283 |
+
# Add new row
|
284 |
+
df_to_update.loc[len(df_to_update)] = new_row
|
285 |
+
|
286 |
+
def process_submission(
|
287 |
+
method_name, team_name, dataset, split, contact_email,
|
288 |
+
code_repo, csv_file, model_description, hardware, paper_link
|
289 |
+
):
|
290 |
+
"""Process and validate submission"""
|
291 |
+
try:
|
292 |
+
# [Previous validation code remains the same]
|
293 |
+
|
294 |
+
# Process CSV file through evaluation pipeline
|
295 |
+
results = compute_metrics(
|
296 |
+
csv_file.name,
|
297 |
+
dataset=dataset.lower(),
|
298 |
+
split=split,
|
299 |
+
num_workers=4
|
300 |
+
)
|
301 |
+
|
302 |
+
if isinstance(results, str) and results.startswith("Error"):
|
303 |
+
return f"Evaluation error: {results}"
|
304 |
+
|
305 |
+
# Prepare submission data
|
306 |
+
submission_data = {
|
307 |
+
"method_name": method_name,
|
308 |
+
"team_name": team_name,
|
309 |
+
"dataset": dataset,
|
310 |
+
"split": split,
|
311 |
+
"contact_email": contact_email,
|
312 |
+
"code_repo": code_repo,
|
313 |
+
"model_description": model_description,
|
314 |
+
"hardware": hardware,
|
315 |
+
"paper_link": paper_link,
|
316 |
+
"results": results,
|
317 |
+
"status": "pending_review",
|
318 |
+
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
319 |
+
}
|
320 |
+
|
321 |
+
# Save submission and get ID
|
322 |
+
submission_id = save_submission(submission_data, csv_file)
|
323 |
+
|
324 |
+
# Update leaderboard data if submission is valid
|
325 |
+
update_leaderboard_data(submission_data)
|
326 |
+
|
327 |
+
return f"""
|
328 |
+
Submission successful! Your submission ID is: {submission_id}
|
329 |
+
|
330 |
+
Evaluation Results:
|
331 |
+
Hit@1: {results['hit@1']:.2f}
|
332 |
+
Hit@5: {results['hit@5']:.2f}
|
333 |
+
Recall@20: {results['recall@20']:.2f}
|
334 |
+
MRR: {results['mrr']:.2f}
|
335 |
+
|
336 |
+
Your submission has been saved and is pending review.
|
337 |
+
Once approved, your results will appear in the leaderboard under the method name: {method_name}
|
338 |
+
"""
|
339 |
+
|
340 |
+
except Exception as e:
|
341 |
+
return f"Error processing submission: {str(e)}"
|
342 |
+
|
343 |
+
def filter_by_model_type(df, selected_types):
|
344 |
+
if not selected_types:
|
345 |
+
return df.head(0)
|
346 |
+
selected_models = [model for type in selected_types for model in model_types[type]]
|
347 |
+
return df[df['Method'].isin(selected_models)]
|
348 |
+
|
349 |
+
def format_dataframe(df, dataset):
|
350 |
+
columns = ['Method'] + [col for col in df.columns if dataset in col]
|
351 |
+
filtered_df = df[columns].copy()
|
352 |
+
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
|
353 |
+
filtered_df = filtered_df.sort_values('MRR', ascending=False)
|
354 |
+
return filtered_df
|
355 |
|
356 |
+
def update_tables(selected_types):
|
357 |
+
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
|
358 |
+
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
|
359 |
+
filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
|
360 |
+
|
361 |
+
outputs = []
|
362 |
+
for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
|
363 |
+
for dataset in ['AMAZON', 'MAG', 'PRIME']:
|
364 |
+
outputs.append(format_dataframe(df, f"STARK-{dataset}"))
|
365 |
+
|
366 |
+
return outputs
|
367 |
+
|
368 |
+
|
369 |
+
css = """
|
370 |
+
table > thead {
|
371 |
+
white-space: normal
|
372 |
+
}
|
373 |
+
|
374 |
+
table {
|
375 |
+
--cell-width-1: 250px
|
376 |
+
}
|
377 |
+
|
378 |
+
table > tbody > tr > td:nth-child(2) > div {
|
379 |
+
overflow-x: auto
|
380 |
+
}
|
381 |
+
|
382 |
+
.tab-nav {
|
383 |
+
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
|
384 |
+
margin-bottom: 1rem;
|
385 |
+
}
|
386 |
+
"""
|
387 |
+
|
388 |
+
# Main application
|
389 |
+
with gr.Blocks(css=css) as demo:
|
390 |
+
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
|
391 |
+
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
|
392 |
+
|
393 |
+
# Model type filter
|
394 |
+
model_type_filter = gr.CheckboxGroup(
|
395 |
+
choices=list(model_types.keys()),
|
396 |
+
value=list(model_types.keys()),
|
397 |
+
label="Model types",
|
398 |
+
interactive=True
|
399 |
+
)
|
400 |
+
|
401 |
+
# Initialize dataframes list
|
402 |
+
all_dfs = []
|
403 |
+
|
404 |
+
# Create nested tabs structure
|
405 |
+
with gr.Tabs() as outer_tabs:
|
406 |
+
with gr.TabItem("Synthesized (full)"):
|
407 |
+
with gr.Tabs() as inner_tabs1:
|
408 |
+
for dataset in ['AMAZON', 'MAG', 'PRIME']:
|
409 |
+
with gr.TabItem(dataset):
|
410 |
+
all_dfs.append(gr.DataFrame(interactive=False))
|
411 |
+
|
412 |
+
with gr.TabItem("Synthesized (10%)"):
|
413 |
+
with gr.Tabs() as inner_tabs2:
|
414 |
+
for dataset in ['AMAZON', 'MAG', 'PRIME']:
|
415 |
+
with gr.TabItem(dataset):
|
416 |
+
all_dfs.append(gr.DataFrame(interactive=False))
|
417 |
+
|
418 |
+
with gr.TabItem("Human-Generated"):
|
419 |
+
with gr.Tabs() as inner_tabs3:
|
420 |
+
for dataset in ['AMAZON', 'MAG', 'PRIME']:
|
421 |
+
with gr.TabItem(dataset):
|
422 |
+
all_dfs.append(gr.DataFrame(interactive=False))
|
423 |
+
|
424 |
+
# Submission section
|
425 |
+
gr.Markdown("---")
|
426 |
+
gr.Markdown("## Submit Your Results")
|
427 |
+
gr.Markdown("""
|
428 |
+
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
|
429 |
+
For questions, contact stark-qa@cs.stanford.edu
|
430 |
+
""")
|
431 |
+
|
432 |
with gr.Row():
|
433 |
+
with gr.Column():
|
434 |
+
method_name = gr.Textbox(
|
435 |
+
label="Method Name (max 25 chars)*",
|
436 |
+
placeholder="e.g., MyRetrievalModel-v1"
|
|
|
|
|
|
|
437 |
)
|
438 |
+
team_name = gr.Textbox(
|
439 |
+
label="Team Name (max 25 chars)*",
|
440 |
+
placeholder="e.g., Stanford NLP"
|
441 |
+
)
|
442 |
+
dataset = gr.Dropdown(
|
443 |
+
choices=["amazon", "mag", "prime"],
|
444 |
+
label="Dataset*",
|
445 |
+
value="amazon"
|
446 |
+
)
|
447 |
+
split = gr.Dropdown(
|
448 |
+
choices=["test", "test-0.1", "human_generated_eval"],
|
449 |
+
label="Split*",
|
450 |
+
value="test"
|
451 |
+
)
|
452 |
+
contact_email = gr.Textbox(
|
453 |
+
label="Contact Email(s)*",
|
454 |
+
placeholder="email@example.com; another@example.com"
|
455 |
+
)
|
456 |
+
|
457 |
+
with gr.Column():
|
458 |
+
code_repo = gr.Textbox(
|
459 |
+
label="Code Repository*",
|
460 |
+
placeholder="https://github.com/username/repository"
|
461 |
+
)
|
462 |
+
csv_file = gr.File(
|
463 |
+
label="Prediction CSV*",
|
464 |
+
file_types=[".csv"]
|
465 |
+
)
|
466 |
+
model_description = gr.Textbox(
|
467 |
+
label="Model Description*",
|
468 |
+
lines=3,
|
469 |
+
placeholder="Briefly describe how your retriever model works..."
|
470 |
+
)
|
471 |
+
hardware = gr.Textbox(
|
472 |
+
label="Hardware Specifications*",
|
473 |
+
placeholder="e.g., 4x NVIDIA A100 80GB"
|
474 |
+
)
|
475 |
+
paper_link = gr.Textbox(
|
476 |
+
label="Paper Link (Optional)",
|
477 |
+
placeholder="https://arxiv.org/abs/..."
|
478 |
+
)
|
479 |
+
|
480 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
481 |
+
result = gr.Textbox(label="Submission Status", interactive=False)
|
482 |
+
|
483 |
+
# Set up event handlers
|
484 |
+
model_type_filter.change(
|
485 |
+
update_tables,
|
486 |
+
inputs=[model_type_filter],
|
487 |
+
outputs=all_dfs
|
488 |
+
)
|
489 |
+
|
490 |
+
submit_btn.click(
|
491 |
+
process_submission,
|
492 |
+
inputs=[
|
493 |
+
method_name, team_name, dataset, split, contact_email,
|
494 |
+
code_repo, csv_file, model_description, hardware, paper_link
|
495 |
+
],
|
496 |
+
outputs=result
|
497 |
+
)
|
498 |
+
|
499 |
+
# Initial table update
|
500 |
+
demo.load(
|
501 |
+
update_tables,
|
502 |
+
inputs=[model_type_filter],
|
503 |
+
outputs=all_dfs
|
504 |
+
)
|
505 |
|
506 |
+
# Launch the application
|
507 |
+
demo.launch()
|
|
|
|