Shiyu Zhao
Update space
b554584
raw
history blame
46.5 kB
import gradio as gr
import pandas as pd
import numpy as np
import os
import sys
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from huggingface_hub import HfApi
import shutil
import tempfile
import time
from queue import Queue
import threading
import time
from stark_qa import load_qa
from stark_qa.evaluator import Evaluator
from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler
from stark_qa import load_qa
from stark_qa.evaluator import Evaluator
from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler
class ForumPost:
def __init__(self, message: str, timestamp: str, post_type: str):
self.message = message
self.timestamp = timestamp
self.post_type = post_type # 'submission' or 'status_update'
class SubmissionForum:
def __init__(self, forum_file="submissions/forum_posts.json", hub_storage=None):
self.forum_file = forum_file
self.hub_storage = hub_storage
self.posts = self._load_posts()
def _load_posts(self):
"""Load existing posts from JSON file in the hub"""
try:
# Try to get content from hub
content = self.hub_storage.get_file_content(self.forum_file)
if content:
posts_data = json.loads(content)
return [ForumPost(**post) for post in posts_data]
return []
except Exception as e:
print(f"Error loading forum posts: {e}")
return []
def _save_posts(self):
"""Save posts to JSON file in the hub"""
try:
posts_data = [
{
"message": post.message,
"timestamp": post.timestamp,
"post_type": post.post_type
}
for post in self.posts
]
# Convert to JSON string
json_content = json.dumps(posts_data, indent=4)
# Save to hub
self.hub_storage.save_to_hub(
file_content=json_content,
path_in_repo=self.forum_file,
commit_message="Update forum posts"
)
except Exception as e:
print(f"Error saving forum posts: {e}")
def add_submission_post(self, method_name: str, dataset: str, split: str):
"""Add a new submission post"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"📥 New submission: {method_name} on {split}/{dataset}"
self.posts.append(ForumPost(message, timestamp, "submission"))
self._save_posts()
def add_status_update(self, method_name: str, new_status: str):
"""Add a status update post"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
emoji = "✅" if new_status == "approved" else "❌"
message = f"{emoji} Status update: {method_name} has been {new_status}"
self.posts.append(ForumPost(message, timestamp, "status_update"))
self._save_posts()
def get_recent_posts(self, limit=50):
"""Get recent posts, newest first"""
return sorted(
self.posts,
key=lambda x: datetime.strptime(x.timestamp, "%Y-%m-%d %H:%M:%S"),
reverse=True
)[:limit]
def format_posts_for_display(self, limit=50):
"""Format posts for Gradio Markdown display"""
recent_posts = self.get_recent_posts(limit)
if not recent_posts:
return "No forum posts yet."
formatted_posts = []
for post in recent_posts:
formatted_posts.append(
f"**{post.timestamp}** \n"
f"{post.message} \n"
f"{'---'}"
)
return "\n\n".join(formatted_posts)
# Initialize storage once at startup
try:
REPO_ID = "snap-stanford/stark-leaderboard" # Replace with your space name
hub_storage = HubStorage(REPO_ID)
forum = SubmissionForum(hub_storage=hub_storage)
except Exception as e:
print(f"Failed to initialize forum with hub storage: {e}")
forum = SubmissionForum(hub_storage=hub_storage)
def process_single_instance(args):
"""Process a single instance with improved validation and error handling"""
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
try:
# Get query data
query, query_id, answer_ids, meta_info = qa_dataset[idx]
# Get predictions
matching_preds = eval_csv[eval_csv['query_id'] == query_id]['pred_rank']
if len(matching_preds) == 0:
print(f"Warning: No prediction found for query_id {query_id}")
return None
elif len(matching_preds) > 1:
print(f"Warning: Multiple predictions found for query_id {query_id}, using first one")
pred_rank = matching_preds.iloc[0]
# Parse prediction
if isinstance(pred_rank, str):
try:
pred_rank = eval(pred_rank)
except Exception as e:
print(f"Error parsing pred_rank for query_id {query_id}: {str(e)}")
return None
# Validate prediction format
if not isinstance(pred_rank, list):
print(f"Warning: pred_rank is not a list for query_id {query_id}")
return None
# # Validate and filter prediction values
# valid_pred_rank = []
# for rank in pred_rank[:100]: # Only use top 100 predictions
# if isinstance(rank, (int, np.integer)) and 0 <= rank < max_candidate_id:
# valid_pred_rank.append(rank)
# else:
# print(f"Warning: Invalid prediction {rank} for query_id {query_id}")
# if not valid_pred_rank:
# print(f"Warning: No valid predictions for query_id {query_id}")
# return None
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
answer_ids = torch.LongTensor(answer_ids)
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
result["idx"], result["query_id"] = idx, query_id
return result
except Exception as e:
print(f"Error processing idx {idx}: {str(e)}")
return None
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
"""Compute metrics with improved thread safety and error handling"""
start_time = time.time()
# Dataset configuration
candidate_ids_dict = {
'amazon': [i for i in range(957192)],
'mag': [i for i in range(1172724, 1872968)],
'prime': [i for i in range(129375)]
}
try:
# Input validation
if dataset not in candidate_ids_dict:
raise ValueError(f"Invalid dataset '{dataset}'")
if split not in ['test', 'test-0.1', 'human_generated_eval']:
raise ValueError(f"Invalid split '{split}'")
# Load and validate CSV
print(f"\nLoading data for {dataset} {split}")
eval_csv = pd.read_csv(csv_path)
required_columns = ['query_id', 'pred_rank']
if not all(col in eval_csv.columns for col in required_columns):
raise ValueError(f"CSV must contain columns: {required_columns}")
eval_csv = eval_csv[required_columns]
# Initialize components
evaluator = Evaluator(candidate_ids_dict[dataset])
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
split_idx = qa_dataset.get_idx_split()
all_indices = split_idx[split].tolist()
print(f"Processing {len(all_indices)} instances with {num_workers} threads")
# Process instances
results_list = []
valid_count = 0
error_count = 0
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [
executor.submit(
process_single_instance,
(idx, eval_csv, qa_dataset, evaluator, eval_metrics)
)
for idx in all_indices
]
with tqdm(total=len(futures), desc="Processing") as pbar:
for future in as_completed(futures):
try:
result = future.result()
if result is not None:
results_list.append(result)
valid_count += 1
else:
error_count += 1
except Exception as e:
print(f"Error in future: {str(e)}")
error_count += 1
pbar.update(1)
# Compute final metrics
if not results_list:
raise ValueError("No valid results were produced")
print(f"\nProcessing complete. Valid: {valid_count}, Errors: {error_count}")
results_df = pd.DataFrame(results_list)
final_results = {
metric: results_df[metric].mean()
for metric in eval_metrics
}
elapsed_time = time.time() - start_time
print(f"Completed in {elapsed_time:.2f} seconds")
return final_results
except Exception as error:
elapsed_time = time.time() - start_time
error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}"
print(error_msg)
return error_msg
# Data dictionaries for leaderboard
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}
data_synthesized_10 = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}
data_human_generated = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}
# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
# Model type definitions
model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'],
'Others': [] # Will be populated dynamically with submitted models
}
# Submission form validation functions
def validate_email(email_str):
"""Validate email format(s)"""
emails = [e.strip() for e in email_str.split(';')]
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
return all(email_pattern.match(email) for email in emails)
def validate_github_url(url):
"""Validate GitHub URL format"""
github_pattern = re.compile(
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
)
return bool(github_pattern.match(url))
def validate_csv(file_obj):
"""Validate CSV file format and content"""
try:
df = pd.read_csv(file_obj.name)
required_cols = ['query_id', 'pred_rank']
if not all(col in df.columns for col in required_cols):
return False, "CSV must contain 'query_id' and 'pred_rank' columns"
try:
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
if not isinstance(first_rank, list) or len(first_rank) < 20:
return False, "pred_rank must be a list with at least 20 candidates"
except:
return False, "Invalid pred_rank format"
return True, "Valid CSV file"
except Exception as e:
return False, f"Error processing CSV: {str(e)}"
def sanitize_name(name):
"""Sanitize name for file system use"""
return re.sub(r'[^a-zA-Z0-9]', '_', name)
def read_json_from_hub(api: HfApi, repo_id: str, file_path: str) -> dict:
"""
Read and parse JSON file from HuggingFace Hub.
Args:
api: HuggingFace API instance
repo_id: Repository ID
file_path: Path to file in repository
Returns:
dict: Parsed JSON content
"""
try:
# Download the file content as bytes
content = api.hf_hub_download(
repo_id=repo_id,
filename=file_path,
repo_type="space"
)
# Read and parse JSON
with open(content, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Error reading JSON file {file_path}: {str(e)}")
return None
def scan_submissions_directory():
"""
Scans the submissions directory and updates the model types dictionary
with submitted models.
"""
try:
# Initialize HuggingFace API
api = HfApi()
# Track submissions for each split
submissions_by_split = {
'test': [],
'test-0.1': [],
'human_generated_eval': []
}
# Get all files from repository
try:
all_files = api.list_repo_files(
repo_id=REPO_ID,
repo_type="space"
)
# Filter for files in submissions directory
repo_files = [f for f in all_files if f.startswith('submissions/')]
except Exception as e:
print(f"Error listing repository contents: {str(e)}")
return submissions_by_split
# Group files by team folders
folder_files = {}
for filepath in repo_files:
parts = filepath.split('/')
if len(parts) < 3: # Need at least submissions/team_folder/file
continue
folder_name = parts[1] # team_folder name
if folder_name not in folder_files:
folder_files[folder_name] = []
folder_files[folder_name].append(filepath)
# Process each team folder
for folder_name, files in folder_files.items():
try:
# Find latest.json in this folder
latest_file = next((f for f in files if f.endswith('latest.json')), None)
if not latest_file:
print(f"No latest.json found in {folder_name}")
continue
# Read latest.json
latest_info = read_json_from_hub(api, REPO_ID, latest_file)
if not latest_info:
print(f"Failed to read latest.json for {folder_name}")
continue
timestamp = latest_info.get('latest_submission')
if not timestamp:
print(f"No timestamp found in latest.json for {folder_name}")
continue
# Find metadata file for latest submission
metadata_file = next(
(f for f in files if f.endswith(f'metadata_{timestamp}.json')),
None
)
if not metadata_file:
print(f"No matching metadata file found for {folder_name} timestamp {timestamp}")
continue
# Read metadata file
submission_data = read_json_from_hub(api, REPO_ID, metadata_file)
if not submission_data:
print(f"Failed to read metadata for {folder_name}")
continue
if latest_info.get('status') != 'approved':
print(f"Skipping unapproved submission in {folder_name}")
continue
# Add to submissions by split
split = submission_data.get('Split')
if split in submissions_by_split:
submissions_by_split[split].append(submission_data)
# Update model types if necessary
method_name = submission_data.get('Method Name')
model_type = submission_data.get('Model Type', 'Others')
# Add to model type if it's a new method
method_exists = any(method_name in methods for methods in model_types.values())
if not method_exists and model_type in model_types:
model_types[model_type].append(method_name)
except Exception as e:
print(f"Error processing folder {folder_name}: {str(e)}")
continue
return submissions_by_split
except Exception as e:
print(f"Error scanning submissions directory: {str(e)}")
return None
def initialize_leaderboard():
"""
Initialize the leaderboard with baseline results and submitted results.
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
try:
# First, initialize with baseline results
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
print("Initialized with baseline results")
# Then scan and add submitted results
submissions = scan_submissions_directory()
if submissions:
for split, split_submissions in submissions.items():
for submission in split_submissions:
if submission.get('results'): # Make sure we have results
# Update appropriate DataFrame based on split
if split == 'test':
df_to_update = df_synthesized_full
elif split == 'test-0.1':
df_to_update = df_synthesized_10
else: # human_generated_eval
df_to_update = df_human_generated
# Prepare new row data
new_row = {
'Method': submission['Method Name'],
f'STARK-{submission["Dataset"].upper()}_Hit@1': submission['results']['hit@1'],
f'STARK-{submission["Dataset"].upper()}_Hit@5': submission['results']['hit@5'],
f'STARK-{submission["Dataset"].upper()}_R@20': submission['results']['recall@20'],
f'STARK-{submission["Dataset"].upper()}_MRR': submission['results']['mrr']
}
# Update existing row or add new one
method_mask = df_to_update['Method'] == submission['Method Name']
if method_mask.any():
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
df_to_update.loc[len(df_to_update)] = new_row
print("Leaderboard initialization complete")
except Exception as e:
print(f"Error initializing leaderboard: {str(e)}")
def get_file_content(file_path):
"""
Helper function to safely read file content from HuggingFace repository
"""
try:
api = HfApi()
content_path = api.hf_hub_download(
repo_id=REPO_ID,
filename=file_path,
repo_type="space"
)
with open(content_path, 'r') as f:
return f.read()
except Exception as e:
print(f"Error reading file {file_path}: {str(e)}")
return None
def save_submission(submission_data, csv_file):
"""
Save submission data and CSV file using model_name_team_name format
Args:
submission_data (dict): Metadata and results for the submission
csv_file: The uploaded CSV file object
"""
# Create folder name from model name and team name
model_name_clean = sanitize_name(submission_data['Method Name'])
team_name_clean = sanitize_name(submission_data['Team Name'])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create folder name: model_name_team_name
folder_name = f"{model_name_clean}_{team_name_clean}"
submission_id = f"{folder_name}_{timestamp}"
# Create submission directory structure
base_dir = "submissions"
submission_dir = os.path.join(base_dir, folder_name)
os.makedirs(submission_dir, exist_ok=True)
# Save CSV file with timestamp to allow multiple submissions
csv_filename = f"predictions_{timestamp}.csv"
csv_path = os.path.join(submission_dir, csv_filename)
if hasattr(csv_file, 'name'):
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
target.write(source.read())
# Add file paths to submission data
submission_data.update({
"csv_path": csv_path,
"submission_id": submission_id,
"folder_name": folder_name
})
# Save metadata as JSON with timestamp
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
# Update latest.json to track most recent submission
latest_path = os.path.join(submission_dir, "latest.json")
with open(latest_path, 'w') as f:
json.dump({
"latest_submission": timestamp,
"status": "pending_review",
"method_name": submission_data['Method Name']
}, f, indent=4)
return submission_id
def update_leaderboard_data(submission_data):
"""
Update leaderboard data with new submission results
Only uses model name in the displayed table
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
# Determine which DataFrame to update based on split
split_to_df = {
'test': df_synthesized_full,
'test-0.1': df_synthesized_10,
'human_generated_eval': df_human_generated
}
df_to_update = split_to_df[submission_data['Split']]
submitted_dataset = submission_data['Dataset'].upper()
# Prepare new row data
new_row = {
'Method': submission_data['Method Name'],
f'STARK-{submitted_dataset}_Hit@1': submission_data['results']['hit@1'],
f'STARK-{submitted_dataset}_Hit@5': submission_data['results']['hit@5'],
f'STARK-{submitted_dataset}_R@20': submission_data['results']['recall@20'],
f'STARK-{submitted_dataset}_MRR': submission_data['results']['mrr']
}
# Check if method already exists
method_mask = df_to_update['Method'] == submission_data['Method Name']
if method_mask.any():
# Update existing row
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
# For new method, create row with NaN for other datasets
all_columns = df_to_update.columns
full_row = {col: None for col in all_columns} # Initialize with NaN
full_row.update(new_row) # Update with the submitted dataset's values
df_to_update.loc[len(df_to_update)] = full_row
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
# Function to format meta_data as an HTML table (without Prediction CSV)
def format_metadata_as_table(meta_data):
"""
Formats metadata dictionary into an HTML table for the email.
Handles multiple contact emails separated by a semicolon.
Args:
meta_data (dict): Dictionary containing submission metadata.
Returns:
str: HTML string representing the metadata table.
"""
table_rows = ""
for key, value in meta_data.items():
if key == "Contact Email(s)":
# Ensure that contact emails are split by semicolon
emails = value.split(';')
formatted_emails = "; ".join([email.strip() for email in emails])
table_rows += f"<tr><td><b>{key}</b></td><td>{formatted_emails}</td></tr>"
elif key != "Prediction CSV": # Exclude the Prediction CSV field
table_rows += f"<tr><td><b>{key}</b></td><td>{value}</td></tr>"
table_html = f"""
<table border="1" cellpadding="5" cellspacing="0">
{table_rows}
</table>
"""
return table_html
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
def format_evaluation_results(results):
"""
Formats the evaluation results dictionary into a readable string.
Args:
results (dict): Dictionary containing evaluation metrics and their values.
Returns:
str: Formatted string of evaluation results.
"""
result_lines = [f"{metric}: {value}" for metric, value in results.items()]
return "\n".join(result_lines)
def get_model_type_for_method(method_name):
"""
Find the model type category for a given method name.
Returns 'Others' if not found in predefined categories.
"""
for type_name, methods in model_types.items():
if method_name in methods:
return type_name
return 'Others'
def validate_model_type(method_name, selected_type):
"""
Validate if the selected model type is appropriate for the method name.
Returns (is_valid, message).
"""
# Check if method exists in any category
existing_type = None
for type_name, methods in model_types.items():
if method_name in methods:
existing_type = type_name
break
# If method exists, it must be submitted under its predefined category
if existing_type:
if existing_type != selected_type:
return False, f"This method name is already registered under '{existing_type}'. Please use the correct category."
return True, "Valid model type"
# For new methods, any category is valid
return True, "Valid model type"
def process_submission(
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link, model_type, honor_code
):
"""Process and validate submission"""
if not honor_code:
return "Error: Please accept the honor code to submit"
temp_files = []
try:
# Input validation
if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_type]):
return "Error: Please fill in all required fields"
# Validate model type
is_valid, message = validate_model_type(method_name, model_type)
if not is_valid:
return f"Error: {message}"
# Create metadata
meta_data = {
"Method Name": method_name,
"Team Name": team_name,
"Dataset": dataset,
"Split": split,
"Contact Email(s)": contact_email,
"Code Repository": code_repo,
"Model Description": model_description,
"Hardware": hardware,
"(Optional) Paper link": paper_link,
"Model Type": model_type
}
# Generate folder name and timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}"
# Process CSV file
csv_content = None
if isinstance(csv_file, str):
with open(csv_file, 'r') as f:
csv_content = f.read()
elif hasattr(csv_file, 'name'):
with open(csv_file.name, 'r') as f:
csv_content = f.read()
else:
return "Error: Invalid CSV file", forum.format_posts_for_display()
# Compute metrics
results = compute_metrics(
csv_path=csv_file if isinstance(csv_file, str) else csv_file.name,
dataset=dataset.lower(),
split=split,
num_workers=4
)
if isinstance(results, str):
return f"Evaluation error: {results}", forum.format_posts_for_display()
# Process results
processed_results = {
"hit@1": round(results['hit@1'] * 100, 2),
"hit@5": round(results['hit@5'] * 100, 2),
"recall@20": round(results['recall@20'] * 100, 2),
"mrr": round(results['mrr'] * 100, 2)
}
meta_data = {
"Method Name": method_name,
"Team Name": team_name,
"Dataset": dataset,
"Split": split,
"Contact Email(s)": contact_email,
"Code Repository": code_repo,
"Model Description": model_description,
"Hardware": hardware,
"(Optional) Paper link": paper_link,
"Model Type": model_type,
"results": processed_results,
"status": "pending_review",
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Save files to HuggingFace Hub
try:
# 1. Save CSV file
csv_filename = f"predictions_{timestamp}.csv"
csv_path_in_repo = f"submissions/{folder_name}/{csv_filename}"
hub_storage.save_to_hub(
file_content=csv_content,
path_in_repo=csv_path_in_repo,
commit_message=f"Add submission: {method_name} by {team_name}"
)
meta_data["csv_path"] = csv_path_in_repo
# 2. Save metadata
metadata_path = f"submissions/{folder_name}/metadata_{timestamp}.json"
metadata_content = json.dumps(meta_data, indent=4)
hub_storage.save_to_hub(
file_content=metadata_content, # Pass JSON string directly
path_in_repo=metadata_path,
commit_message=f"Add metadata: {method_name} by {team_name}"
)
# 3. Create or update latest.json
latest_info = {
"latest_submission": timestamp,
"status": "pending_review", # or "approved"
"method_name": method_name,
"team_name": team_name
}
latest_path = f"submissions/{folder_name}/latest.json"
latest_content = json.dumps(latest_info, indent=4)
hub_storage.save_to_hub(
file_content=latest_content, # Pass JSON string directly
path_in_repo=latest_path,
commit_message=f"Update latest submission info for {method_name}"
)
except Exception as e:
raise RuntimeError(f"Failed to save files to HuggingFace Hub: {str(e)}")
# Send confirmation email and update leaderboard data
# send_submission_confirmation(meta_data, processed_results)
update_leaderboard_data(meta_data)
forum.add_submission_post(method_name, dataset, split)
forum_display = forum.format_posts_for_display()
# Return success message
return f"""
Submission successful!
Evaluation Results:
Hit@1: {processed_results['hit@1']:.2f}%
Hit@5: {processed_results['hit@5']:.2f}%
Recall@20: {processed_results['recall@20']:.2f}%
MRR: {processed_results['mrr']:.2f}%
Your submission has been saved and a confirmation email has been sent to {contact_email}.
Once approved, your results will appear in the leaderboard under: {method_name}
You can find your submission at:
https://huggingface.co/spaces/{REPO_ID}/tree/main/submissions/{folder_name}
Please refresh the page to see your submission in the leaderboard.
""", forum_display
except Exception as e:
error_message = f"Error processing submission: {str(e)}"
# send_error_notification(meta_data, error_message)
return error_message, forum.format_posts_for_display()
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except Exception as e:
print(f"Warning: Failed to delete temporary file {temp_file}: {str(e)}")
# Modify the review script to add forum posts for status updates
def update_json_file(file_path: str, content: dict, method_name: str = None, new_status: str = None) -> bool:
"""Update local JSON file and add forum post if status changed"""
try:
with open(file_path, 'w') as f:
json.dump(content, f, indent=4)
# Add forum post if this is a status update
if method_name and new_status:
forum.add_status_update(method_name, new_status)
return True
except Exception as e:
print(f"Error updating {file_path}: {str(e)}")
return False
def filter_by_model_type(df, selected_types):
"""
Filter DataFrame by selected model types, including submitted models.
"""
if not selected_types:
return df.head(0)
# Get all models from selected types
selected_models = []
for type_name in selected_types:
selected_models.extend(model_types[type_name])
# Filter DataFrame to include only selected models
return df[df['Method'].isin(selected_models)]
def format_dataframe(df, dataset):
"""
Format DataFrame for display, removing rows with no data for the specified dataset.
"""
# Get relevant columns
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
# Remove rows where all metric columns are NaN
metric_columns = [col for col in filtered_df.columns if col != 'Method']
filtered_df = filtered_df.dropna(subset=metric_columns, how='all')
# Rename columns to remove dataset prefix
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
# Sort by MRR
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def update_tables(selected_types):
"""
Update tables based on selected model types.
Include all models from selected categories.
"""
if not selected_types:
return [df.head(0) for df in [df_synthesized_full, df_synthesized_10, df_human_generated]]
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
outputs = []
for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
outputs.append(format_dataframe(df, f"STARK-{dataset}"))
return outputs
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.tab-nav {
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
margin-bottom: 1rem;
}
"""
# Main application
with gr.Blocks(css=css) as demo:
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
# Initialize leaderboard at startup
print("Starting leaderboard initialization...")
initialize_leaderboard()
print("Leaderboard initialization finished")
# Model type filter
model_type_filter = gr.CheckboxGroup(
choices=list(model_types.keys()),
value=list(model_types.keys()),
label="Model types",
interactive=True
)
# Initialize dataframes list
all_dfs = []
# Create nested tabs structure
with gr.Tabs() as outer_tabs:
with gr.TabItem("Synthesized (full)"):
with gr.Tabs() as inner_tabs1:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Synthesized (10%)"):
with gr.Tabs() as inner_tabs2:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Human-Generated"):
with gr.Tabs() as inner_tabs3:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
# Submission section
gr.Markdown("---")
gr.Markdown("## Submit Your Results")
gr.Markdown("""
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
For questions, contact stark-qa@cs.stanford.edu. Detailed instructions can be referred at [submission instructions](https://docs.google.com/document/d/11coGjTmOEi9p9-PUq1oy0eTOj8f_8CVQhDl5_0FKT14/edit?usp=sharing).
""")
with gr.Row():
with gr.Column():
method_name = gr.Textbox(
label="Method Name (max 25 chars)*",
placeholder="e.g., MyRetrievalModel-v1"
)
dataset = gr.Dropdown(
choices=["amazon", "mag", "prime"],
label="Dataset*",
value="prime"
)
split = gr.Dropdown(
choices=["test", "test-0.1", "human_generated_eval"],
label="Split*",
value="human_generated_eval"
)
team_name = gr.Textbox(
label="Team Name (max 25 chars)*",
placeholder="e.g., Stanford NLP"
)
contact_email = gr.Textbox(
label="Contact Email(s)*",
placeholder="email@example.com; another@example.com"
)
model_type = gr.Dropdown(
choices=list(model_types.keys()),
label="Model Type*",
value="Others",
info="Select the appropriate category for your model"
)
model_description = gr.Textbox(
label="Model Description*",
lines=2,
placeholder="Briefly describe how your retriever model works..."
)
with gr.Column():
code_repo = gr.Textbox(
label="Code Repository*",
placeholder="https://github.com/snap-stanford/stark-leaderboard"
)
hardware = gr.Textbox(
label="Hardware Specifications*",
placeholder="e.g., 4x NVIDIA A100 80GB"
)
with gr.Row():
honor_code = gr.Checkbox(
label="By submitting these results, you confirm that they are truthful and reproducible, and you verify the integrity of your submission.",
value=False)
csv_file = gr.File(
label="Prediction CSV*",
file_types=[".csv"],
type="filepath"
)
paper_link = gr.Textbox(
label="Paper Link (Optional)",
placeholder="https://arxiv.org/abs/..."
)
def update_submit_button(honor_checked):
"""Update submit button state based on honor code checkbox"""
return gr.Button.update(interactive=honor_checked)
submit_btn = gr.Button("Submit", variant="primary")
result = gr.Textbox(label="Submission Status", interactive=False)
# Set up event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Add forum section
gr.Markdown("---")
gr.Markdown("## Recent Submissions and Updates")
forum_display = gr.Markdown(forum.format_posts_for_display())
refresh_btn = gr.Button("Refresh Forum")
# Event handler for forum refresh
refresh_btn.click(
lambda: forum.format_posts_for_display(),
inputs=[],
outputs=[forum_display]
)
# Event handler for submission button
submit_btn.click(
fn=process_submission,
inputs=[
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link, model_type, honor_code
],
outputs=[result, forum_display]
).then( # Chain the forum refresh after submission
fn=lambda: forum.format_posts_for_display(),
inputs=[],
outputs=[forum_display]
)
# Initial table update
demo.load(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Launch the application
demo.launch()