Spaces:
Sleeping
Sleeping
| import cv2 | |
| import requests | |
| import os | |
| import numpy as np | |
| from PIL import ImageDraw | |
| from modules import paths_internal | |
| from pkg_resources import parse_version | |
| GREEN = "#0F0" | |
| BLUE = "#00F" | |
| RED = "#F00" | |
| def crop_image(im, settings): | |
| """ Intelligently crop an image to the subject matter """ | |
| scale_by = 1 | |
| if is_landscape(im.width, im.height): | |
| scale_by = settings.crop_height / im.height | |
| elif is_portrait(im.width, im.height): | |
| scale_by = settings.crop_width / im.width | |
| elif is_square(im.width, im.height): | |
| if is_square(settings.crop_width, settings.crop_height): | |
| scale_by = settings.crop_width / im.width | |
| elif is_landscape(settings.crop_width, settings.crop_height): | |
| scale_by = settings.crop_width / im.width | |
| elif is_portrait(settings.crop_width, settings.crop_height): | |
| scale_by = settings.crop_height / im.height | |
| im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) | |
| im_debug = im.copy() | |
| focus = focal_point(im_debug, settings) | |
| # take the focal point and turn it into crop coordinates that try to center over the focal | |
| # point but then get adjusted back into the frame | |
| y_half = int(settings.crop_height / 2) | |
| x_half = int(settings.crop_width / 2) | |
| x1 = focus.x - x_half | |
| if x1 < 0: | |
| x1 = 0 | |
| elif x1 + settings.crop_width > im.width: | |
| x1 = im.width - settings.crop_width | |
| y1 = focus.y - y_half | |
| if y1 < 0: | |
| y1 = 0 | |
| elif y1 + settings.crop_height > im.height: | |
| y1 = im.height - settings.crop_height | |
| x2 = x1 + settings.crop_width | |
| y2 = y1 + settings.crop_height | |
| crop = [x1, y1, x2, y2] | |
| results = [] | |
| results.append(im.crop(tuple(crop))) | |
| if settings.annotate_image: | |
| d = ImageDraw.Draw(im_debug) | |
| rect = list(crop) | |
| rect[2] -= 1 | |
| rect[3] -= 1 | |
| d.rectangle(rect, outline=GREEN) | |
| results.append(im_debug) | |
| if settings.desktop_view_image: | |
| im_debug.show() | |
| return results | |
| def focal_point(im, settings): | |
| corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else [] | |
| entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else [] | |
| face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else [] | |
| pois = [] | |
| weight_pref_total = 0 | |
| if corner_points: | |
| weight_pref_total += settings.corner_points_weight | |
| if entropy_points: | |
| weight_pref_total += settings.entropy_points_weight | |
| if face_points: | |
| weight_pref_total += settings.face_points_weight | |
| corner_centroid = None | |
| if corner_points: | |
| corner_centroid = centroid(corner_points) | |
| corner_centroid.weight = settings.corner_points_weight / weight_pref_total | |
| pois.append(corner_centroid) | |
| entropy_centroid = None | |
| if entropy_points: | |
| entropy_centroid = centroid(entropy_points) | |
| entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total | |
| pois.append(entropy_centroid) | |
| face_centroid = None | |
| if face_points: | |
| face_centroid = centroid(face_points) | |
| face_centroid.weight = settings.face_points_weight / weight_pref_total | |
| pois.append(face_centroid) | |
| average_point = poi_average(pois, settings) | |
| if settings.annotate_image: | |
| d = ImageDraw.Draw(im) | |
| max_size = min(im.width, im.height) * 0.07 | |
| if corner_centroid is not None: | |
| color = BLUE | |
| box = corner_centroid.bounding(max_size * corner_centroid.weight) | |
| d.text((box[0], box[1] - 15), f"Edge: {corner_centroid.weight:.02f}", fill=color) | |
| d.ellipse(box, outline=color) | |
| if len(corner_points) > 1: | |
| for f in corner_points: | |
| d.rectangle(f.bounding(4), outline=color) | |
| if entropy_centroid is not None: | |
| color = "#ff0" | |
| box = entropy_centroid.bounding(max_size * entropy_centroid.weight) | |
| d.text((box[0], box[1] - 15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color) | |
| d.ellipse(box, outline=color) | |
| if len(entropy_points) > 1: | |
| for f in entropy_points: | |
| d.rectangle(f.bounding(4), outline=color) | |
| if face_centroid is not None: | |
| color = RED | |
| box = face_centroid.bounding(max_size * face_centroid.weight) | |
| d.text((box[0], box[1] - 15), f"Face: {face_centroid.weight:.02f}", fill=color) | |
| d.ellipse(box, outline=color) | |
| if len(face_points) > 1: | |
| for f in face_points: | |
| d.rectangle(f.bounding(4), outline=color) | |
| d.ellipse(average_point.bounding(max_size), outline=GREEN) | |
| return average_point | |
| def image_face_points(im, settings): | |
| if settings.dnn_model_path is not None: | |
| detector = cv2.FaceDetectorYN.create( | |
| settings.dnn_model_path, | |
| "", | |
| (im.width, im.height), | |
| 0.9, # score threshold | |
| 0.3, # nms threshold | |
| 5000 # keep top k before nms | |
| ) | |
| faces = detector.detect(np.array(im)) | |
| results = [] | |
| if faces[1] is not None: | |
| for face in faces[1]: | |
| x = face[0] | |
| y = face[1] | |
| w = face[2] | |
| h = face[3] | |
| results.append( | |
| PointOfInterest( | |
| int(x + (w * 0.5)), # face focus left/right is center | |
| int(y + (h * 0.33)), # face focus up/down is close to the top of the head | |
| size=w, | |
| weight=1 / len(faces[1]) | |
| ) | |
| ) | |
| return results | |
| else: | |
| np_im = np.array(im) | |
| gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) | |
| tries = [ | |
| [f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01], | |
| [f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05], | |
| [f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05], | |
| [f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05], | |
| [f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05], | |
| [f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05], | |
| [f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05], | |
| [f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05] | |
| ] | |
| for t in tries: | |
| classifier = cv2.CascadeClassifier(t[0]) | |
| minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side | |
| try: | |
| faces = classifier.detectMultiScale(gray, scaleFactor=1.1, | |
| minNeighbors=7, minSize=(minsize, minsize), | |
| flags=cv2.CASCADE_SCALE_IMAGE) | |
| except Exception: | |
| continue | |
| if faces: | |
| rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] | |
| return [PointOfInterest((r[0] + r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0] - r[2]), | |
| weight=1 / len(rects)) for r in rects] | |
| return [] | |
| def image_corner_points(im, settings): | |
| grayscale = im.convert("L") | |
| # naive attempt at preventing focal points from collecting at watermarks near the bottom | |
| gd = ImageDraw.Draw(grayscale) | |
| gd.rectangle([0, im.height * .9, im.width, im.height], fill="#999") | |
| np_im = np.array(grayscale) | |
| points = cv2.goodFeaturesToTrack( | |
| np_im, | |
| maxCorners=100, | |
| qualityLevel=0.04, | |
| minDistance=min(grayscale.width, grayscale.height) * 0.06, | |
| useHarrisDetector=False, | |
| ) | |
| if points is None: | |
| return [] | |
| focal_points = [] | |
| for point in points: | |
| x, y = point.ravel() | |
| focal_points.append(PointOfInterest(x, y, size=4, weight=1 / len(points))) | |
| return focal_points | |
| def image_entropy_points(im, settings): | |
| landscape = im.height < im.width | |
| portrait = im.height > im.width | |
| if landscape: | |
| move_idx = [0, 2] | |
| move_max = im.size[0] | |
| elif portrait: | |
| move_idx = [1, 3] | |
| move_max = im.size[1] | |
| else: | |
| return [] | |
| e_max = 0 | |
| crop_current = [0, 0, settings.crop_width, settings.crop_height] | |
| crop_best = crop_current | |
| while crop_current[move_idx[1]] < move_max: | |
| crop = im.crop(tuple(crop_current)) | |
| e = image_entropy(crop) | |
| if (e > e_max): | |
| e_max = e | |
| crop_best = list(crop_current) | |
| crop_current[move_idx[0]] += 4 | |
| crop_current[move_idx[1]] += 4 | |
| x_mid = int(crop_best[0] + settings.crop_width / 2) | |
| y_mid = int(crop_best[1] + settings.crop_height / 2) | |
| return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)] | |
| def image_entropy(im): | |
| # greyscale image entropy | |
| # band = np.asarray(im.convert("L")) | |
| band = np.asarray(im.convert("1"), dtype=np.uint8) | |
| hist, _ = np.histogram(band, bins=range(0, 256)) | |
| hist = hist[hist > 0] | |
| return -np.log2(hist / hist.sum()).sum() | |
| def centroid(pois): | |
| x = [poi.x for poi in pois] | |
| y = [poi.y for poi in pois] | |
| return PointOfInterest(sum(x) / len(pois), sum(y) / len(pois)) | |
| def poi_average(pois, settings): | |
| weight = 0.0 | |
| x = 0.0 | |
| y = 0.0 | |
| for poi in pois: | |
| weight += poi.weight | |
| x += poi.x * poi.weight | |
| y += poi.y * poi.weight | |
| avg_x = round(weight and x / weight) | |
| avg_y = round(weight and y / weight) | |
| return PointOfInterest(avg_x, avg_y) | |
| def is_landscape(w, h): | |
| return w > h | |
| def is_portrait(w, h): | |
| return h > w | |
| def is_square(w, h): | |
| return w == h | |
| model_dir_opencv = os.path.join(paths_internal.models_path, 'opencv') | |
| if parse_version(cv2.__version__) >= parse_version('4.8'): | |
| model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet_2023mar.onnx') | |
| model_url = 'https://github.com/opencv/opencv_zoo/blob/b6e370b10f641879a87890d44e42173077154a05/models/face_detection_yunet/face_detection_yunet_2023mar.onnx?raw=true' | |
| else: | |
| model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet.onnx') | |
| model_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true' | |
| def download_and_cache_models(): | |
| if not os.path.exists(model_file_path): | |
| os.makedirs(model_dir_opencv, exist_ok=True) | |
| print(f"downloading face detection model from '{model_url}' to '{model_file_path}'") | |
| response = requests.get(model_url) | |
| with open(model_file_path, "wb") as f: | |
| f.write(response.content) | |
| return model_file_path | |
| class PointOfInterest: | |
| def __init__(self, x, y, weight=1.0, size=10): | |
| self.x = x | |
| self.y = y | |
| self.weight = weight | |
| self.size = size | |
| def bounding(self, size): | |
| return [ | |
| self.x - size // 2, | |
| self.y - size // 2, | |
| self.x + size // 2, | |
| self.y + size // 2 | |
| ] | |
| class Settings: | |
| def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None): | |
| self.crop_width = crop_width | |
| self.crop_height = crop_height | |
| self.corner_points_weight = corner_points_weight | |
| self.entropy_points_weight = entropy_points_weight | |
| self.face_points_weight = face_points_weight | |
| self.annotate_image = annotate_image | |
| self.desktop_view_image = False | |
| self.dnn_model_path = dnn_model_path | |