computer-agent / gradio_script.py
M-Rique's picture
Add streaming, more robust logs
8b6a4c9
import re
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import PlanningStep
from smolagents.gradio_ui import get_step_footnote_content
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available
def pull_messages_from_step(step_log: MemoryStep, skip_model_outputs: bool = False):
"""Extract ChatMessage objects from agent steps with proper nesting.
Args:
step_log: The step log to display as gr.ChatMessage objects.
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
This is used for instance when streaming model outputs have already been displayed.
"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
import gradio as gr
if isinstance(step_log, ActionStep):
# Output the step number
step_number = (
f"Step {step_log.step_number}"
if step_log.step_number is not None
else "Step"
)
if not skip_model_outputs:
yield gr.ChatMessage(
role="assistant",
content=f"**{step_number}**",
metadata={"status": "done"},
)
# First yield the thought/reasoning from the LLM
if (
not skip_model_outputs
and hasattr(step_log, "model_output")
and step_log.model_output is not None
):
model_output = step_log.model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(
r"```\s*<end_code>", "```", model_output
) # handles ```<end_code>
model_output = re.sub(
r"<end_code>\s*```", "```", model_output
) # handles <end_code>```
model_output = re.sub(
r"```\s*\n\s*<end_code>", "```", model_output
) # handles ```\n<end_code>
model_output = model_output.strip()
yield gr.ChatMessage(
role="assistant", content=model_output, metadata={"status": "done"}
)
# For tool calls, create a parent message
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Tool call becomes the parent message with timing info
# First we will handle arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
# Clean up the content by removing any end code tags
content = re.sub(
r"```.*?\n", "", content
) # Remove existing code blocks
content = re.sub(
r"\s*<end_code>\s*", "", content
) # Remove end_code tags
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"status": "done",
},
)
yield parent_message_tool
# Display execution logs if they exist
if hasattr(step_log, "observations") and (
step_log.observations is not None and step_log.observations.strip()
): # Only yield execution logs if there's actual content
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"```bash\n{log_content}\n",
metadata={"title": "📝 Execution Logs", "status": "done"},
)
# Display any errors
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "status": "done"},
)
# Update parent message metadata to done status without yielding a new message
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role="assistant",
content={
"path": path_image,
"mime_type": f"image/{path_image.split('.')[-1]}",
},
metadata={"title": "🖼️ Output Image", "status": "done"},
)
# Handle standalone errors but not from tool calls
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "status": "done"},
)
yield gr.ChatMessage(
role="assistant",
content=get_step_footnote_content(step_log, step_number),
metadata={"status": "done"},
)
yield gr.ChatMessage(
role="assistant", content="-----", metadata={"status": "done"}
)
elif isinstance(step_log, PlanningStep):
yield gr.ChatMessage(
role="assistant", content="**Planning step**", metadata={"status": "done"}
)
yield gr.ChatMessage(
role="assistant", content=step_log.plan, metadata={"status": "done"}
)
yield gr.ChatMessage(
role="assistant",
content=get_step_footnote_content(step_log, "Planning step"),
metadata={"status": "done"},
)
yield gr.ChatMessage(
role="assistant", content="-----", metadata={"status": "done"}
)
elif isinstance(step_log, FinalAnswerStep):
final_answer = step_log.final_answer
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:** {str(final_answer)}",
metadata={"status": "done"},
)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
total_input_tokens = 0
total_output_tokens = 0
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
intermediate_text = ""
for step_log in agent.run(
task,
images=task_images,
stream=True,
reset=reset_agent_memory,
additional_args=additional_args,
):
# Track tokens if model provides them
if getattr(agent.model, "last_input_token_count", None) is not None:
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, (ActionStep, PlanningStep)):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
if isinstance(step_log, MemoryStep):
intermediate_text = ""
for message in pull_messages_from_step(
step_log,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
):
yield message
elif isinstance(step_log, ChatMessageStreamDelta):
intermediate_text += step_log.content or ""
yield intermediate_text