Spaces:
Running
Running
from ..base_handler import ModelHandler | |
from transformers import AutoTokenizer | |
import torch | |
import time | |
import numpy as np | |
class Seq2SeqLMHandler(ModelHandler): | |
def __init__(self, model_name, model_class, quantization_type, test_text): | |
super().__init__(model_name, model_class, quantization_type, test_text) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def run_inference(self, model, text): | |
inputs = self.tokenizer(text, return_tensors='pt').to(self.device) | |
start_time = time.time() | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=50) | |
end_time = time.time() | |
return outputs, end_time - start_time | |
def decode_output(self, outputs): | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def compare_outputs(self, original_outputs, quantized_outputs): | |
if original_outputs is None or quantized_outputs is None: | |
return None | |
original_tokens = original_outputs[0].cpu().numpy() | |
quantized_tokens = quantized_outputs[0].cpu().numpy() | |
metrics = { | |
'sequence_similarity': np.mean(original_tokens == quantized_tokens), | |
'sequence_length_diff': abs(len(original_tokens) - len(quantized_tokens)), | |
} | |
return metrics |