Spaces:
Running
Running
from ..base_handler import ModelHandler | |
from transformers import AutoTokenizer | |
import torch | |
import time | |
import numpy as np | |
class MaskedLMHandler(ModelHandler): | |
def __init__(self, model_name, model_class, quantization_type, test_text): | |
super().__init__(model_name, model_class, quantization_type, test_text) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def run_inference(self, model, text): | |
inputs = self.tokenizer(text, return_tensors='pt').to(self.device) | |
start_time = time.time() | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
end_time = time.time() | |
return outputs, inputs, end_time - start_time | |
def decode_output(self, outputs, inputs): | |
logits = outputs.logits | |
masked_index = torch.where(inputs['input_ids'] == self.tokenizer.mask_token_id)[1] | |
predicted_token_id = logits[0, masked_index].argmax(axis=-1) | |
return self.tokenizer.decode(predicted_token_id) | |
def compare_outputs(self, original_outputs, quantized_outputs): | |
if original_outputs is None or quantized_outputs is None: | |
return None | |
original_logits = original_outputs.logits.detach().cpu().numpy() | |
quantized_logits = quantized_outputs.logits.detach().cpu().numpy() | |
metrics = { | |
'mse': ((original_logits - quantized_logits) ** 2).mean(), | |
'top_1_accuracy': np.mean( | |
np.argmax(original_logits, axis=-1) == np.argmax(quantized_logits, axis=-1) | |
), | |
} | |
return metrics |