Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Upload infer_new.py
Browse files- infer_new.py +569 -0
 
    	
        infer_new.py
    ADDED
    
    | 
         @@ -0,0 +1,569 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch, os, traceback, sys, warnings, shutil, numpy as np
         
     | 
| 2 | 
         
            +
            import gradio as gr
         
     | 
| 3 | 
         
            +
            import librosa
         
     | 
| 4 | 
         
            +
            import asyncio
         
     | 
| 5 | 
         
            +
            import rarfile
         
     | 
| 6 | 
         
            +
            import edge_tts
         
     | 
| 7 | 
         
            +
            import yt_dlp
         
     | 
| 8 | 
         
            +
            import ffmpeg
         
     | 
| 9 | 
         
            +
            import gdown
         
     | 
| 10 | 
         
            +
            import subprocess
         
     | 
| 11 | 
         
            +
            import wave
         
     | 
| 12 | 
         
            +
            import soundfile as sf
         
     | 
| 13 | 
         
            +
            from scipy.io import wavfile
         
     | 
| 14 | 
         
            +
            from datetime import datetime
         
     | 
| 15 | 
         
            +
            from urllib.parse import urlparse
         
     | 
| 16 | 
         
            +
            from mega import Mega
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import base64
         
     | 
| 19 | 
         
            +
            import tempfile
         
     | 
| 20 | 
         
            +
            import os
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            from pydub import AudioSegment
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            now_dir = os.getcwd()
         
     | 
| 29 | 
         
            +
            tmp = os.path.join(now_dir, "TEMP")
         
     | 
| 30 | 
         
            +
            shutil.rmtree(tmp, ignore_errors=True)
         
     | 
| 31 | 
         
            +
            os.makedirs(tmp, exist_ok=True)
         
     | 
| 32 | 
         
            +
            os.environ["TEMP"] = tmp
         
     | 
| 33 | 
         
            +
            split_model="htdemucs"
         
     | 
| 34 | 
         
            +
            from lib.infer_pack.models import (
         
     | 
| 35 | 
         
            +
                SynthesizerTrnMs256NSFsid,
         
     | 
| 36 | 
         
            +
                SynthesizerTrnMs256NSFsid_nono,
         
     | 
| 37 | 
         
            +
                SynthesizerTrnMs768NSFsid,
         
     | 
| 38 | 
         
            +
                SynthesizerTrnMs768NSFsid_nono,
         
     | 
| 39 | 
         
            +
            )
         
     | 
| 40 | 
         
            +
            from fairseq import checkpoint_utils
         
     | 
| 41 | 
         
            +
            from vc_infer_pipeline import VC
         
     | 
| 42 | 
         
            +
            from config import Config
         
     | 
| 43 | 
         
            +
            config = Config()
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
         
     | 
| 46 | 
         
            +
            voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            hubert_model = None
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            f0method_mode = ["pm", "harvest", "crepe"]
         
     | 
| 51 | 
         
            +
            f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            if os.path.isfile("rmvpe.pt"):
         
     | 
| 54 | 
         
            +
                f0method_mode.insert(2, "rmvpe")
         
     | 
| 55 | 
         
            +
                f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            def load_hubert():
         
     | 
| 58 | 
         
            +
                global hubert_model
         
     | 
| 59 | 
         
            +
                models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
         
     | 
| 60 | 
         
            +
                    ["hubert_base.pt"],
         
     | 
| 61 | 
         
            +
                    suffix="",
         
     | 
| 62 | 
         
            +
                )
         
     | 
| 63 | 
         
            +
                hubert_model = models[0]
         
     | 
| 64 | 
         
            +
                hubert_model = hubert_model.to(config.device)
         
     | 
| 65 | 
         
            +
                if config.is_half:
         
     | 
| 66 | 
         
            +
                    hubert_model = hubert_model.half()
         
     | 
| 67 | 
         
            +
                else:
         
     | 
| 68 | 
         
            +
                    hubert_model = hubert_model.float()
         
     | 
| 69 | 
         
            +
                hubert_model.eval()
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            load_hubert()
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            weight_root = "weights"
         
     | 
| 74 | 
         
            +
            index_root = "weights/index"
         
     | 
| 75 | 
         
            +
            weights_model = []
         
     | 
| 76 | 
         
            +
            weights_index = []
         
     | 
| 77 | 
         
            +
            for _, _, model_files in os.walk(weight_root):
         
     | 
| 78 | 
         
            +
                for file in model_files:
         
     | 
| 79 | 
         
            +
                    if file.endswith(".pth"):
         
     | 
| 80 | 
         
            +
                        weights_model.append(file)
         
     | 
| 81 | 
         
            +
            for _, _, index_files in os.walk(index_root):
         
     | 
| 82 | 
         
            +
                for file in index_files:
         
     | 
| 83 | 
         
            +
                    if file.endswith('.index') and "trained" not in file:
         
     | 
| 84 | 
         
            +
                        weights_index.append(os.path.join(index_root, file))
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            def check_models():
         
     | 
| 87 | 
         
            +
                weights_model = []
         
     | 
| 88 | 
         
            +
                weights_index = []
         
     | 
| 89 | 
         
            +
                for _, _, model_files in os.walk(weight_root):
         
     | 
| 90 | 
         
            +
                    for file in model_files:
         
     | 
| 91 | 
         
            +
                        if file.endswith(".pth"):
         
     | 
| 92 | 
         
            +
                            weights_model.append(file)
         
     | 
| 93 | 
         
            +
                for _, _, index_files in os.walk(index_root):
         
     | 
| 94 | 
         
            +
                    for file in index_files:
         
     | 
| 95 | 
         
            +
                        if file.endswith('.index') and "trained" not in file:
         
     | 
| 96 | 
         
            +
                            weights_index.append(os.path.join(index_root, file))
         
     | 
| 97 | 
         
            +
                return (
         
     | 
| 98 | 
         
            +
                    gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
         
     | 
| 99 | 
         
            +
                    gr.Dropdown.update(choices=sorted(weights_index))
         
     | 
| 100 | 
         
            +
                )
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
            def clean():
         
     | 
| 103 | 
         
            +
                return (
         
     | 
| 104 | 
         
            +
                    gr.Dropdown.update(value=""),
         
     | 
| 105 | 
         
            +
                    gr.Slider.update(visible=False)
         
     | 
| 106 | 
         
            +
                )
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
            def api_convert_voice(spk_id,voice_transform,input_audio_path):
         
     | 
| 111 | 
         
            +
                
         
     | 
| 112 | 
         
            +
                #split audio
         
     | 
| 113 | 
         
            +
                cut_vocal_and_inst(input_audio_path,spk_id)
         
     | 
| 114 | 
         
            +
                print("audio splitting performed")
         
     | 
| 115 | 
         
            +
                vocal_path = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
         
     | 
| 116 | 
         
            +
                inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
         
     | 
| 117 | 
         
            +
                
         
     | 
| 118 | 
         
            +
                output_path = convert_voice(spk_id, vocal_path, voice_transform)
         
     | 
| 119 | 
         
            +
                output_path1= combine_vocal_and_inst(output_path,inst)
         
     | 
| 120 | 
         
            +
                print(output_path1)
         
     | 
| 121 | 
         
            +
                return output_path1    
         
     | 
| 122 | 
         
            +
                
         
     | 
| 123 | 
         
            +
                
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
            def convert_voice(spk_id, input_audio_path, voice_transform):
         
     | 
| 130 | 
         
            +
                get_vc(spk_id,0.5)
         
     | 
| 131 | 
         
            +
                output_audio_path = vc_single(
         
     | 
| 132 | 
         
            +
                    sid=0,
         
     | 
| 133 | 
         
            +
                    input_audio_path=input_audio_path,
         
     | 
| 134 | 
         
            +
                    f0_up_key=voice_transform,  # Assuming voice_transform corresponds to f0_up_key
         
     | 
| 135 | 
         
            +
                    f0_file=None ,
         
     | 
| 136 | 
         
            +
                    f0_method="rmvpe",
         
     | 
| 137 | 
         
            +
                    file_index=spk_id,  # Assuming file_index_path corresponds to file_index
         
     | 
| 138 | 
         
            +
                    index_rate=0.75,
         
     | 
| 139 | 
         
            +
                    filter_radius=3,
         
     | 
| 140 | 
         
            +
                    resample_sr=0,
         
     | 
| 141 | 
         
            +
                    rms_mix_rate=0.25,
         
     | 
| 142 | 
         
            +
                    protect=0.33  # Adjusted from protect_rate to protect to match the function signature
         
     | 
| 143 | 
         
            +
                )
         
     | 
| 144 | 
         
            +
                print(output_audio_path)
         
     | 
| 145 | 
         
            +
                return output_audio_path
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
            def vc_single(
         
     | 
| 149 | 
         
            +
                sid,
         
     | 
| 150 | 
         
            +
                input_audio_path,    
         
     | 
| 151 | 
         
            +
                f0_up_key,
         
     | 
| 152 | 
         
            +
                f0_file,
         
     | 
| 153 | 
         
            +
                f0_method,
         
     | 
| 154 | 
         
            +
                file_index,
         
     | 
| 155 | 
         
            +
                index_rate,
         
     | 
| 156 | 
         
            +
                filter_radius,
         
     | 
| 157 | 
         
            +
                resample_sr,
         
     | 
| 158 | 
         
            +
                rms_mix_rate,
         
     | 
| 159 | 
         
            +
                protect
         
     | 
| 160 | 
         
            +
            ):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
         
     | 
| 161 | 
         
            +
                global tgt_sr, net_g, vc, hubert_model, version, cpt
         
     | 
| 162 | 
         
            +
                
         
     | 
| 163 | 
         
            +
                try:
         
     | 
| 164 | 
         
            +
                    logs = []
         
     | 
| 165 | 
         
            +
                    print(f"Converting...")
         
     | 
| 166 | 
         
            +
                    
         
     | 
| 167 | 
         
            +
                    audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
         
     | 
| 168 | 
         
            +
                    print(f"found audio ")
         
     | 
| 169 | 
         
            +
                    f0_up_key = int(f0_up_key)
         
     | 
| 170 | 
         
            +
                    times = [0, 0, 0]
         
     | 
| 171 | 
         
            +
                    if hubert_model == None:
         
     | 
| 172 | 
         
            +
                        load_hubert()
         
     | 
| 173 | 
         
            +
                    print("loaded hubert")
         
     | 
| 174 | 
         
            +
                    if_f0 = 1
         
     | 
| 175 | 
         
            +
                    audio_opt = vc.pipeline(
         
     | 
| 176 | 
         
            +
                        hubert_model,
         
     | 
| 177 | 
         
            +
                        net_g,
         
     | 
| 178 | 
         
            +
                        0,
         
     | 
| 179 | 
         
            +
                        audio,
         
     | 
| 180 | 
         
            +
                        input_audio_path,
         
     | 
| 181 | 
         
            +
                        times,
         
     | 
| 182 | 
         
            +
                        f0_up_key,
         
     | 
| 183 | 
         
            +
                        f0_method,
         
     | 
| 184 | 
         
            +
                        file_index,
         
     | 
| 185 | 
         
            +
                        # file_big_npy,
         
     | 
| 186 | 
         
            +
                        index_rate,
         
     | 
| 187 | 
         
            +
                        if_f0,
         
     | 
| 188 | 
         
            +
                        filter_radius,
         
     | 
| 189 | 
         
            +
                        tgt_sr,
         
     | 
| 190 | 
         
            +
                        resample_sr,
         
     | 
| 191 | 
         
            +
                        rms_mix_rate,
         
     | 
| 192 | 
         
            +
                        version,
         
     | 
| 193 | 
         
            +
                        protect,
         
     | 
| 194 | 
         
            +
                        f0_file=f0_file
         
     | 
| 195 | 
         
            +
                    )
         
     | 
| 196 | 
         
            +
                    if resample_sr >= 16000 and tgt_sr != resample_sr:
         
     | 
| 197 | 
         
            +
                        tgt_sr = resample_sr
         
     | 
| 198 | 
         
            +
                    index_info = (
         
     | 
| 199 | 
         
            +
                        "Using index:%s." % file_index
         
     | 
| 200 | 
         
            +
                        if os.path.exists(file_index)
         
     | 
| 201 | 
         
            +
                        else "Index not used."
         
     | 
| 202 | 
         
            +
                    )
         
     | 
| 203 | 
         
            +
                    print("writing to FS")
         
     | 
| 204 | 
         
            +
                    output_file_path = os.path.join("output", f"converted_audio_{sid}.wav")  # Adjust path as needed
         
     | 
| 205 | 
         
            +
                    
         
     | 
| 206 | 
         
            +
                    os.makedirs(os.path.dirname(output_file_path), exist_ok=True)  # Create the output directory if it doesn't exist
         
     | 
| 207 | 
         
            +
                    print("create dir")
         
     | 
| 208 | 
         
            +
                    # Save the audio file using the target sampling rate
         
     | 
| 209 | 
         
            +
                    sf.write(output_file_path, audio_opt, tgt_sr)
         
     | 
| 210 | 
         
            +
                    
         
     | 
| 211 | 
         
            +
                    print("wrote to FS")
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    # Return the path to the saved file along with any other information
         
     | 
| 214 | 
         
            +
                    
         
     | 
| 215 | 
         
            +
                    return output_file_path
         
     | 
| 216 | 
         
            +
                       
         
     | 
| 217 | 
         
            +
                        
         
     | 
| 218 | 
         
            +
                except:
         
     | 
| 219 | 
         
            +
                    info = traceback.format_exc()
         
     | 
| 220 | 
         
            +
                    
         
     | 
| 221 | 
         
            +
                    return info, (None, None)
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
            def get_vc(sid, to_return_protect0):
         
     | 
| 224 | 
         
            +
                global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
         
     | 
| 225 | 
         
            +
                if sid == "" or sid == []:
         
     | 
| 226 | 
         
            +
                    global hubert_model
         
     | 
| 227 | 
         
            +
                    if hubert_model is not None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
         
     | 
| 228 | 
         
            +
                        print("clean_empty_cache")
         
     | 
| 229 | 
         
            +
                        del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
         
     | 
| 230 | 
         
            +
                        hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
         
     | 
| 231 | 
         
            +
                        if torch.cuda.is_available():
         
     | 
| 232 | 
         
            +
                            torch.cuda.empty_cache()
         
     | 
| 233 | 
         
            +
                        ###楼下不这么折腾清理不干净
         
     | 
| 234 | 
         
            +
                        if_f0 = cpt.get("f0", 1)
         
     | 
| 235 | 
         
            +
                        version = cpt.get("version", "v1")
         
     | 
| 236 | 
         
            +
                        if version == "v1":
         
     | 
| 237 | 
         
            +
                            if if_f0 == 1:
         
     | 
| 238 | 
         
            +
                                net_g = SynthesizerTrnMs256NSFsid(
         
     | 
| 239 | 
         
            +
                                    *cpt["config"], is_half=config.is_half
         
     | 
| 240 | 
         
            +
                                )
         
     | 
| 241 | 
         
            +
                            else:
         
     | 
| 242 | 
         
            +
                                net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
         
     | 
| 243 | 
         
            +
                        elif version == "v2":
         
     | 
| 244 | 
         
            +
                            if if_f0 == 1:
         
     | 
| 245 | 
         
            +
                                net_g = SynthesizerTrnMs768NSFsid(
         
     | 
| 246 | 
         
            +
                                    *cpt["config"], is_half=config.is_half
         
     | 
| 247 | 
         
            +
                                )
         
     | 
| 248 | 
         
            +
                            else:
         
     | 
| 249 | 
         
            +
                                net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
         
     | 
| 250 | 
         
            +
                        del net_g, cpt
         
     | 
| 251 | 
         
            +
                        if torch.cuda.is_available():
         
     | 
| 252 | 
         
            +
                            torch.cuda.empty_cache()
         
     | 
| 253 | 
         
            +
                        cpt = None
         
     | 
| 254 | 
         
            +
                    return (
         
     | 
| 255 | 
         
            +
                        gr.Slider.update(maximum=2333, visible=False),
         
     | 
| 256 | 
         
            +
                        gr.Slider.update(visible=True),
         
     | 
| 257 | 
         
            +
                        gr.Dropdown.update(choices=sorted(weights_index), value=""),
         
     | 
| 258 | 
         
            +
                        gr.Markdown.update(value="# <center> No model selected")
         
     | 
| 259 | 
         
            +
                    )
         
     | 
| 260 | 
         
            +
                print(f"Loading {sid} model...")
         
     | 
| 261 | 
         
            +
                selected_model = sid[:-4]
         
     | 
| 262 | 
         
            +
                cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
         
     | 
| 263 | 
         
            +
                tgt_sr = cpt["config"][-1]
         
     | 
| 264 | 
         
            +
                cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
         
     | 
| 265 | 
         
            +
                if_f0 = cpt.get("f0", 1)
         
     | 
| 266 | 
         
            +
                if if_f0 == 0:
         
     | 
| 267 | 
         
            +
                    to_return_protect0 = {
         
     | 
| 268 | 
         
            +
                        "visible": False,
         
     | 
| 269 | 
         
            +
                        "value": 0.5,
         
     | 
| 270 | 
         
            +
                        "__type__": "update",
         
     | 
| 271 | 
         
            +
                    }
         
     | 
| 272 | 
         
            +
                else:
         
     | 
| 273 | 
         
            +
                    to_return_protect0 = {
         
     | 
| 274 | 
         
            +
                        "visible": True,
         
     | 
| 275 | 
         
            +
                        "value": to_return_protect0,
         
     | 
| 276 | 
         
            +
                        "__type__": "update",
         
     | 
| 277 | 
         
            +
                    }
         
     | 
| 278 | 
         
            +
                version = cpt.get("version", "v1")
         
     | 
| 279 | 
         
            +
                if version == "v1":
         
     | 
| 280 | 
         
            +
                    if if_f0 == 1:
         
     | 
| 281 | 
         
            +
                        net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
         
     | 
| 282 | 
         
            +
                    else:
         
     | 
| 283 | 
         
            +
                        net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
         
     | 
| 284 | 
         
            +
                elif version == "v2":
         
     | 
| 285 | 
         
            +
                    if if_f0 == 1:
         
     | 
| 286 | 
         
            +
                        net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
         
     | 
| 287 | 
         
            +
                    else:
         
     | 
| 288 | 
         
            +
                        net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
         
     | 
| 289 | 
         
            +
                del net_g.enc_q
         
     | 
| 290 | 
         
            +
                print(net_g.load_state_dict(cpt["weight"], strict=False))
         
     | 
| 291 | 
         
            +
                net_g.eval().to(config.device)
         
     | 
| 292 | 
         
            +
                if config.is_half:
         
     | 
| 293 | 
         
            +
                    net_g = net_g.half()
         
     | 
| 294 | 
         
            +
                else:
         
     | 
| 295 | 
         
            +
                    net_g = net_g.float()
         
     | 
| 296 | 
         
            +
                vc = VC(tgt_sr, config)
         
     | 
| 297 | 
         
            +
                n_spk = cpt["config"][-3]
         
     | 
| 298 | 
         
            +
                weights_index = []
         
     | 
| 299 | 
         
            +
                for _, _, index_files in os.walk(index_root):
         
     | 
| 300 | 
         
            +
                    for file in index_files:
         
     | 
| 301 | 
         
            +
                        if file.endswith('.index') and "trained" not in file:
         
     | 
| 302 | 
         
            +
                            weights_index.append(os.path.join(index_root, file))
         
     | 
| 303 | 
         
            +
                if weights_index == []:
         
     | 
| 304 | 
         
            +
                    selected_index = gr.Dropdown.update(value="")
         
     | 
| 305 | 
         
            +
                else:
         
     | 
| 306 | 
         
            +
                    selected_index = gr.Dropdown.update(value=weights_index[0])
         
     | 
| 307 | 
         
            +
                for index, model_index in enumerate(weights_index):
         
     | 
| 308 | 
         
            +
                    if selected_model in model_index:
         
     | 
| 309 | 
         
            +
                        selected_index = gr.Dropdown.update(value=weights_index[index])
         
     | 
| 310 | 
         
            +
                        break
         
     | 
| 311 | 
         
            +
                return (
         
     | 
| 312 | 
         
            +
                    gr.Slider.update(maximum=n_spk, visible=True),
         
     | 
| 313 | 
         
            +
                    to_return_protect0,
         
     | 
| 314 | 
         
            +
                    selected_index,
         
     | 
| 315 | 
         
            +
                    gr.Markdown.update(
         
     | 
| 316 | 
         
            +
                        f'## <center> {selected_model}\n'+
         
     | 
| 317 | 
         
            +
                        f'### <center> RVC {version} Model'
         
     | 
| 318 | 
         
            +
                    )
         
     | 
| 319 | 
         
            +
                )
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
            def find_audio_files(folder_path, extensions):
         
     | 
| 322 | 
         
            +
                audio_files = []
         
     | 
| 323 | 
         
            +
                for root, dirs, files in os.walk(folder_path):
         
     | 
| 324 | 
         
            +
                    for file in files:
         
     | 
| 325 | 
         
            +
                        if any(file.endswith(ext) for ext in extensions):
         
     | 
| 326 | 
         
            +
                            audio_files.append(file)
         
     | 
| 327 | 
         
            +
                return audio_files
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
            def vc_multi(
         
     | 
| 330 | 
         
            +
                spk_item,
         
     | 
| 331 | 
         
            +
                vc_input,
         
     | 
| 332 | 
         
            +
                vc_output,
         
     | 
| 333 | 
         
            +
                vc_transform0,
         
     | 
| 334 | 
         
            +
                f0method0,
         
     | 
| 335 | 
         
            +
                file_index,
         
     | 
| 336 | 
         
            +
                index_rate,
         
     | 
| 337 | 
         
            +
                filter_radius,
         
     | 
| 338 | 
         
            +
                resample_sr,
         
     | 
| 339 | 
         
            +
                rms_mix_rate,
         
     | 
| 340 | 
         
            +
                protect,
         
     | 
| 341 | 
         
            +
            ):
         
     | 
| 342 | 
         
            +
                global tgt_sr, net_g, vc, hubert_model, version, cpt
         
     | 
| 343 | 
         
            +
                logs = []
         
     | 
| 344 | 
         
            +
                logs.append("Converting...")
         
     | 
| 345 | 
         
            +
                yield "\n".join(logs)
         
     | 
| 346 | 
         
            +
                print()
         
     | 
| 347 | 
         
            +
                try:
         
     | 
| 348 | 
         
            +
                    if os.path.exists(vc_input):
         
     | 
| 349 | 
         
            +
                        folder_path = vc_input
         
     | 
| 350 | 
         
            +
                        extensions = [".mp3", ".wav", ".flac", ".ogg"]
         
     | 
| 351 | 
         
            +
                        audio_files = find_audio_files(folder_path, extensions)
         
     | 
| 352 | 
         
            +
                        for index, file in enumerate(audio_files, start=1):
         
     | 
| 353 | 
         
            +
                            audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
         
     | 
| 354 | 
         
            +
                            input_audio_path = folder_path, file
         
     | 
| 355 | 
         
            +
                            f0_up_key = int(vc_transform0)
         
     | 
| 356 | 
         
            +
                            times = [0, 0, 0]
         
     | 
| 357 | 
         
            +
                            if hubert_model == None:
         
     | 
| 358 | 
         
            +
                                load_hubert()
         
     | 
| 359 | 
         
            +
                            if_f0 = cpt.get("f0", 1)
         
     | 
| 360 | 
         
            +
                            audio_opt = vc.pipeline(
         
     | 
| 361 | 
         
            +
                                hubert_model,
         
     | 
| 362 | 
         
            +
                                net_g,
         
     | 
| 363 | 
         
            +
                                spk_item,
         
     | 
| 364 | 
         
            +
                                audio,
         
     | 
| 365 | 
         
            +
                                input_audio_path,
         
     | 
| 366 | 
         
            +
                                times,
         
     | 
| 367 | 
         
            +
                                f0_up_key,
         
     | 
| 368 | 
         
            +
                                f0method0,
         
     | 
| 369 | 
         
            +
                                file_index,
         
     | 
| 370 | 
         
            +
                                index_rate,
         
     | 
| 371 | 
         
            +
                                if_f0,
         
     | 
| 372 | 
         
            +
                                filter_radius,
         
     | 
| 373 | 
         
            +
                                tgt_sr,
         
     | 
| 374 | 
         
            +
                                resample_sr,
         
     | 
| 375 | 
         
            +
                                rms_mix_rate,
         
     | 
| 376 | 
         
            +
                                version,
         
     | 
| 377 | 
         
            +
                                protect,
         
     | 
| 378 | 
         
            +
                                f0_file=None
         
     | 
| 379 | 
         
            +
                            )
         
     | 
| 380 | 
         
            +
                            if resample_sr >= 16000 and tgt_sr != resample_sr:
         
     | 
| 381 | 
         
            +
                                tgt_sr = resample_sr
         
     | 
| 382 | 
         
            +
                            output_path = f"{os.path.join(vc_output, file)}"
         
     | 
| 383 | 
         
            +
                            os.makedirs(os.path.join(vc_output), exist_ok=True)
         
     | 
| 384 | 
         
            +
                            sf.write(
         
     | 
| 385 | 
         
            +
                                output_path,
         
     | 
| 386 | 
         
            +
                                audio_opt,
         
     | 
| 387 | 
         
            +
                                tgt_sr,
         
     | 
| 388 | 
         
            +
                            )
         
     | 
| 389 | 
         
            +
                            info = f"{index} / {len(audio_files)} | {file}"
         
     | 
| 390 | 
         
            +
                            print(info)
         
     | 
| 391 | 
         
            +
                            logs.append(info)
         
     | 
| 392 | 
         
            +
                            yield "\n".join(logs)
         
     | 
| 393 | 
         
            +
                    else:
         
     | 
| 394 | 
         
            +
                        logs.append("Folder not found or path doesn't exist.")
         
     | 
| 395 | 
         
            +
                        yield "\n".join(logs)
         
     | 
| 396 | 
         
            +
                except:
         
     | 
| 397 | 
         
            +
                    info = traceback.format_exc()
         
     | 
| 398 | 
         
            +
                    print(info)
         
     | 
| 399 | 
         
            +
                    logs.append(info)
         
     | 
| 400 | 
         
            +
                    yield "\n".join(logs)
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
            def download_audio(url, audio_provider):
         
     | 
| 403 | 
         
            +
                logs = []
         
     | 
| 404 | 
         
            +
                os.makedirs("dl_audio", exist_ok=True)
         
     | 
| 405 | 
         
            +
                if url == "":
         
     | 
| 406 | 
         
            +
                    logs.append("URL required!")
         
     | 
| 407 | 
         
            +
                    yield None, "\n".join(logs)
         
     | 
| 408 | 
         
            +
                    return None, "\n".join(logs)
         
     | 
| 409 | 
         
            +
                if audio_provider == "Youtube":
         
     | 
| 410 | 
         
            +
                    logs.append("Downloading the audio...")
         
     | 
| 411 | 
         
            +
                    yield None, "\n".join(logs)
         
     | 
| 412 | 
         
            +
                    ydl_opts = {
         
     | 
| 413 | 
         
            +
                        'noplaylist': True,
         
     | 
| 414 | 
         
            +
                        'format': 'bestaudio/best',
         
     | 
| 415 | 
         
            +
                        'postprocessors': [{
         
     | 
| 416 | 
         
            +
                            'key': 'FFmpegExtractAudio',
         
     | 
| 417 | 
         
            +
                            'preferredcodec': 'wav',
         
     | 
| 418 | 
         
            +
                        }],
         
     | 
| 419 | 
         
            +
                        "outtmpl": 'result/dl_audio/audio',
         
     | 
| 420 | 
         
            +
                    }
         
     | 
| 421 | 
         
            +
                    audio_path = "result/dl_audio/audio.wav"
         
     | 
| 422 | 
         
            +
                    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
         
     | 
| 423 | 
         
            +
                        ydl.download([url])
         
     | 
| 424 | 
         
            +
                    logs.append("Download Complete.")
         
     | 
| 425 | 
         
            +
                    yield audio_path, "\n".join(logs)
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
            def cut_vocal_and_inst_yt(split_model,spk_id):
         
     | 
| 428 | 
         
            +
                logs = []
         
     | 
| 429 | 
         
            +
                logs.append("Starting the audio splitting process...")
         
     | 
| 430 | 
         
            +
                yield "\n".join(logs), None, None, None
         
     | 
| 431 | 
         
            +
                command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
         
     | 
| 432 | 
         
            +
                result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
         
     | 
| 433 | 
         
            +
                for line in result.stdout:
         
     | 
| 434 | 
         
            +
                    logs.append(line)
         
     | 
| 435 | 
         
            +
                    yield "\n".join(logs), None, None, None
         
     | 
| 436 | 
         
            +
                print(result.stdout)
         
     | 
| 437 | 
         
            +
                vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
         
     | 
| 438 | 
         
            +
                inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
         
     | 
| 439 | 
         
            +
                logs.append("Audio splitting complete.")
         
     | 
| 440 | 
         
            +
                yield "\n".join(logs), vocal, inst, vocal
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
            def cut_vocal_and_inst(audio_path,spk_id):
         
     | 
| 443 | 
         
            +
                
         
     | 
| 444 | 
         
            +
                vocal_path = "output/result/audio.wav"
         
     | 
| 445 | 
         
            +
                os.makedirs("output/result", exist_ok=True)
         
     | 
| 446 | 
         
            +
                #wavfile.write(vocal_path, audio_data[0], audio_data[1])
         
     | 
| 447 | 
         
            +
                #logs.append("Starting the audio splitting process...")
         
     | 
| 448 | 
         
            +
                #yield "\n".join(logs), None, None
         
     | 
| 449 | 
         
            +
                print("before executing splitter")
         
     | 
| 450 | 
         
            +
                command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output"
         
     | 
| 451 | 
         
            +
                #result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
         
     | 
| 452 | 
         
            +
                result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
         
     | 
| 453 | 
         
            +
                if result.returncode != 0:
         
     | 
| 454 | 
         
            +
                    print("Demucs process failed:", result.stderr)
         
     | 
| 455 | 
         
            +
                else:
         
     | 
| 456 | 
         
            +
                    print("Demucs process completed successfully.")
         
     | 
| 457 | 
         
            +
                print("after executing splitter")
         
     | 
| 458 | 
         
            +
                #for line in result.stdout:
         
     | 
| 459 | 
         
            +
                #    logs.append(line)
         
     | 
| 460 | 
         
            +
                #    yield "\n".join(logs), None, None
         
     | 
| 461 | 
         
            +
                
         
     | 
| 462 | 
         
            +
                print(result.stdout)
         
     | 
| 463 | 
         
            +
                vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
         
     | 
| 464 | 
         
            +
                inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
         
     | 
| 465 | 
         
            +
                #logs.append("Audio splitting complete.")
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
            def combine_vocal_and_inst(vocal_path, inst_path):
         
     | 
| 469 | 
         
            +
                
         
     | 
| 470 | 
         
            +
                vocal_volume=1
         
     | 
| 471 | 
         
            +
                inst_volume=1
         
     | 
| 472 | 
         
            +
                os.makedirs("output/result", exist_ok=True)
         
     | 
| 473 | 
         
            +
                # Assuming vocal_path and inst_path are now directly passed as arguments
         
     | 
| 474 | 
         
            +
                output_path = "output/result/combine.mp3"
         
     | 
| 475 | 
         
            +
                #command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
         
     | 
| 476 | 
         
            +
                #command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
         
     | 
| 477 | 
         
            +
                # Load the audio files
         
     | 
| 478 | 
         
            +
                vocal = AudioSegment.from_file(vocal_path)
         
     | 
| 479 | 
         
            +
                instrumental = AudioSegment.from_file(inst_path)
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
            # Overlay the vocal track on top of the instrumental track
         
     | 
| 482 | 
         
            +
                combined = vocal.overlay(instrumental)
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
            # Export the result
         
     | 
| 485 | 
         
            +
                combined.export(output_path, format="mp3")
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
                #result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
         
     | 
| 488 | 
         
            +
                return output_path
         
     | 
| 489 | 
         
            +
                
         
     | 
| 490 | 
         
            +
            #def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume):
         
     | 
| 491 | 
         
            +
            #    os.makedirs("output/result", exist_ok=True)
         
     | 
| 492 | 
         
            +
             ##  output_path = "output/result/combine.mp3"
         
     | 
| 493 | 
         
            +
               # inst_path = f"output/{split_model}/audio/no_vocals.wav"
         
     | 
| 494 | 
         
            +
                #wavfile.write(vocal_path, audio_data[0], audio_data[1])
         
     | 
| 495 | 
         
            +
                #command =  f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
         
     | 
| 496 | 
         
            +
                #result = subprocess.run(command.split(), stdout=subprocess.PIPE)
         
     | 
| 497 | 
         
            +
                #print(result.stdout.decode())
         
     | 
| 498 | 
         
            +
                #return output_path
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
            def download_and_extract_models(urls):
         
     | 
| 501 | 
         
            +
                logs = []
         
     | 
| 502 | 
         
            +
                os.makedirs("zips", exist_ok=True)
         
     | 
| 503 | 
         
            +
                os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
         
     | 
| 504 | 
         
            +
                os.makedirs(os.path.join(weight_root), exist_ok=True)
         
     | 
| 505 | 
         
            +
                os.makedirs(os.path.join(index_root), exist_ok=True)
         
     | 
| 506 | 
         
            +
                for link in urls.splitlines():
         
     | 
| 507 | 
         
            +
                    url = link.strip()
         
     | 
| 508 | 
         
            +
                    if not url:
         
     | 
| 509 | 
         
            +
                        raise gr.Error("URL Required!")
         
     | 
| 510 | 
         
            +
                        return "No URLs provided."
         
     | 
| 511 | 
         
            +
                    model_zip = urlparse(url).path.split('/')[-2] + '.zip'
         
     | 
| 512 | 
         
            +
                    model_zip_path = os.path.join('zips', model_zip)
         
     | 
| 513 | 
         
            +
                    logs.append(f"Downloading...")
         
     | 
| 514 | 
         
            +
                    yield "\n".join(logs)
         
     | 
| 515 | 
         
            +
                    if "drive.google.com" in url:
         
     | 
| 516 | 
         
            +
                        gdown.download(url, os.path.join("zips", "extract"), quiet=False)
         
     | 
| 517 | 
         
            +
                    elif "mega.nz" in url:
         
     | 
| 518 | 
         
            +
                        m = Mega()
         
     | 
| 519 | 
         
            +
                        m.download_url(url, 'zips')
         
     | 
| 520 | 
         
            +
                    else:
         
     | 
| 521 | 
         
            +
                        os.system(f"wget {url} -O {model_zip_path}")
         
     | 
| 522 | 
         
            +
                    logs.append(f"Extracting...")
         
     | 
| 523 | 
         
            +
                    yield "\n".join(logs)
         
     | 
| 524 | 
         
            +
                    for filename in os.listdir("zips"):
         
     | 
| 525 | 
         
            +
                        archived_file = os.path.join("zips", filename)
         
     | 
| 526 | 
         
            +
                        if filename.endswith(".zip"):
         
     | 
| 527 | 
         
            +
                            shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
         
     | 
| 528 | 
         
            +
                        elif filename.endswith(".rar"):
         
     | 
| 529 | 
         
            +
                            with rarfile.RarFile(archived_file, 'r') as rar:
         
     | 
| 530 | 
         
            +
                                rar.extractall(os.path.join("zips", "extract"))
         
     | 
| 531 | 
         
            +
                    for _, dirs, files in os.walk(os.path.join("zips", "extract")):
         
     | 
| 532 | 
         
            +
                        logs.append(f"Searching Model and Index...")
         
     | 
| 533 | 
         
            +
                        yield "\n".join(logs)
         
     | 
| 534 | 
         
            +
                        model = False
         
     | 
| 535 | 
         
            +
                        index = False
         
     | 
| 536 | 
         
            +
                        if files:
         
     | 
| 537 | 
         
            +
                            for file in files:
         
     | 
| 538 | 
         
            +
                                if file.endswith(".pth"):
         
     | 
| 539 | 
         
            +
                                    basename = file[:-4]
         
     | 
| 540 | 
         
            +
                                    shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
         
     | 
| 541 | 
         
            +
                                    model = True
         
     | 
| 542 | 
         
            +
                                if file.endswith('.index') and "trained" not in file:
         
     | 
| 543 | 
         
            +
                                    shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
         
     | 
| 544 | 
         
            +
                                    index = True
         
     | 
| 545 | 
         
            +
                        else:
         
     | 
| 546 | 
         
            +
                            logs.append("No model in main folder.")
         
     | 
| 547 | 
         
            +
                            yield "\n".join(logs)
         
     | 
| 548 | 
         
            +
                            logs.append("Searching in subfolders...")
         
     | 
| 549 | 
         
            +
                            yield "\n".join(logs)
         
     | 
| 550 | 
         
            +
                            for sub_dir in dirs:
         
     | 
| 551 | 
         
            +
                                for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
         
     | 
| 552 | 
         
            +
                                    for file in sub_files:
         
     | 
| 553 | 
         
            +
                                        if file.endswith(".pth"):
         
     | 
| 554 | 
         
            +
                                            basename = file[:-4]
         
     | 
| 555 | 
         
            +
                                            shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
         
     | 
| 556 | 
         
            +
                                            model = True
         
     | 
| 557 | 
         
            +
                                        if file.endswith('.index') and "trained" not in file:
         
     | 
| 558 | 
         
            +
                                            shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
         
     | 
| 559 | 
         
            +
                                            index = True  
         
     | 
| 560 | 
         
            +
                                    shutil.rmtree(os.path.join("zips", "extract", sub_dir))
         
     | 
| 561 | 
         
            +
                        if index is False:
         
     | 
| 562 | 
         
            +
                            logs.append("Model only file, no Index file detected.")
         
     | 
| 563 | 
         
            +
                            yield "\n".join(logs)
         
     | 
| 564 | 
         
            +
                    logs.append("Download Completed!")
         
     | 
| 565 | 
         
            +
                    yield "\n".join(logs)
         
     | 
| 566 | 
         
            +
                logs.append("Successfully download all models! Refresh your model list to load the model")
         
     | 
| 567 | 
         
            +
                yield "\n".join(logs)
         
     | 
| 568 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 569 | 
         
            +
                app.run(debug=False, port=5000,host='0.0.0.0')
         
     |