Advanced-RVC-Inference / myinfer_latest.py
smjain's picture
Upload 2 files
d6f668b verified
raw
history blame
26 kB
import torch, os, traceback, sys, warnings, shutil, numpy as np
import gradio as gr
import librosa
import asyncio
import rarfile
import edge_tts
import yt_dlp
import ffmpeg
import gdown
import subprocess
import wave
import soundfile as sf
from scipy.io import wavfile
from datetime import datetime
from urllib.parse import urlparse
from mega import Mega
from flask import Flask, request, jsonify, send_file,session,render_template
import base64
import tempfile
import threading
import hashlib
import os
import werkzeug
from pydub import AudioSegment
import uuid
from threading import Semaphore
from threading import Lock
from multiprocessing import Process, SimpleQueue, set_start_method,get_context
from queue import Empty
from pydub import AudioSegment
from flask_dance.contrib.google import make_google_blueprint, google
import io
from space import ensure_model_in_weights_dir,upload_to_do
import boto3
from moviepy.editor import *
import os
app = Flask(__name__)
app.secret_key = 'smjain_6789'
now_dir = os.getcwd()
cpt={}
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
split_model="htdemucs"
convert_voice_lock = Lock()
#concurrent= os.getenv('concurrent', '')
# Define the maximum number of concurrent requests
MAX_CONCURRENT_REQUESTS=10
# Initialize the semaphore with the maximum number of concurrent requests
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS)
task_status_tracker = {}
os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1" # ONLY FOR TESTING, REMOVE IN PRODUCTION
os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1"
app.config["GOOGLE_OAUTH_CLIENT_ID"] = "144930881143-n3e3ubers3vkq7jc9doe4iirasgimdt2.apps.googleusercontent.com"
app.config["GOOGLE_OAUTH_CLIENT_SECRET"] = "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"
google_blueprint = make_google_blueprint(scope=["profile", "email"])
app.register_blueprint(google_blueprint, url_prefix="/login")
ACCESS_ID = os.getenv('ACCESS_ID', '')
SECRET_KEY = os.getenv('SECRET_KEY', '')
#set_start_method('spawn', force=True)
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
from config import Config
config = Config()
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
hubert_model = None
f0method_mode = ["pm", "harvest", "crepe"]
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
@app.route("/")
def index():
# Check if user is logged in
return render_template("ui.html")
#if google.authorized:
# return render_template("index.html", logged_in=True)
#else:
# return render_template("index.html", logged_in=False)
if os.path.isfile("rmvpe.pt"):
f0method_mode.insert(2, "rmvpe")
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
load_hubert()
weight_root = "weights"
index_root = "weights/index"
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
def check_models():
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
return (
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
gr.Dropdown.update(choices=sorted(weights_index))
)
def clean():
return (
gr.Dropdown.update(value=""),
gr.Slider.update(visible=False)
)
# Function to delete files
def cleanup_files(file_paths):
for path in file_paths:
try:
os.remove(path)
print(f"Deleted {path}")
except Exception as e:
print(f"Error deleting {path}: {e}")
@app.route("/create_song")
def create_song():
if not google.authorized:
return redirect(url_for("google.login"))
resp = google.get("/oauth2/v2/userinfo")
assert resp.ok, resp.text
email = resp.json()["email"]
user_info = resp.json()
user_id = user_info.get("id")
name = user_info.get("name")
#if not user_exists(email):
# user_data = {'user_id': user_id, 'user_name': name, 'email': email, 'model_created': 'No', 'time_used': '0','model_id':''}
# add_user(user_data)
#models = get_user_models(email)
# Assuming we're interested in whether any model has been created
#model_exists = len(models) > 0
return render_template("ui.html", email=email)
@app.route('/download/<filename>', methods=['GET'])
def download_file(filename):
# Configure the client with your credentials
session = boto3.session.Session()
client = session.client('s3',
region_name='nyc3',
endpoint_url='https://nyc3.digitaloceanspaces.com',
aws_access_key_id=ACCESS_ID,
aws_secret_access_key=SECRET_KEY)
# Define the bucket and object key
bucket_name = 'sing' # Your bucket name
object_key = f'{filename}' # Construct the object key
# Define the local path to save the file
local_file_path = os.path.join('weights', filename)
# Download the file from the bucket
try:
client.download_file(bucket_name, object_key, local_file_path)
except client.exceptions.NoSuchKey:
return jsonify({'error': 'File not found in the bucket'}), 404
except Exception as e:
return jsonify({'error': str(e)}), 500
# Optional: Send the file directly to the client
# return send_file(local_file_path, as_attachment=True)
return jsonify({'success': True, 'message': 'File downloaded successfully', 'file_path': local_file_path})
@app.route('/list-weights', methods=['GET'])
def list_weights():
directory = 'weights'
files = os.listdir(directory)
email = request.args.get('email', default='')
if not email:
return jsonify({"error": "Email parameter is required"}), 400
list_models(email)
# Extract filenames without their extensions
filenames = [os.path.splitext(file)[0] for file in files if os.path.isfile(os.path.join(directory, file))]
return jsonify(filenames)
@app.route("/logout")
def logout():
# Clear the session
session.clear()
#if "google_oauth_token" in session:
# del session["google_oauth_token"]
return redirect(url_for("index"))
@app.route('/status/<audio_id>', methods=['GET'])
def get_status(audio_id):
# Retrieve the task status using the unique ID
print(audio_id)
status_info = task_status_tracker.get(audio_id, {"status": "Unknown ID", "percentage": 0})
return jsonify({"audio_id": audio_id, "status": status_info["status"], "percentage": status_info["percentage"]})
def merge_audio_image(mp3_path, image_path, output_dir, unique_id):
# Load the image
image_clip = ImageClip(image_path)
# Load the audio
audio_clip = AudioFileClip(mp3_path)
# Set the duration of the image clip to match the audio duration
image_clip = image_clip.set_duration(audio_clip.duration)
# Resize the image clip to Instagram's square dimensions (1080x1080)
#image_clip = image_clip.resize((1080, 1080))
image_clip = image_clip.resize((1080, 1080), resample='lanczos')
# Set the audio to the image clip
final_clip = image_clip.set_audio(audio_clip)
# Generate output file path
output_path = os.path.join(output_dir, f"{unique_id}.mp4")
# Write the output video file
final_clip.write_videofile(output_path, codec='libx264', audio_codec='aac')
return output_path
processed_audio_storage = {}
@app.route('/convert_voice', methods=['POST'])
def api_convert_voice():
acquired = request_semaphore.acquire(blocking=False)
if not acquired:
return jsonify({"error": "Too many requests, please try again later"}), 429
#task_status_tracker[unique_id] = {"status": "Starting", "percentage": 0}
try:
#if session.get('submitted'):
# return jsonify({"error": "Form already submitted"}), 400
# Process the form here...
# Set the flag indicating the form has been submitted
#session['submitted'] = True
print(request.form)
print(request.files)
print("accessing spk_id")
spk_id = request.form['spk_id']+'.pth'
print("speaker id path=",spk_id)
voice_transform = request.form['voice_transform']
print("before file access")
# The file part
if 'file' not in request.files:
return jsonify({"error": "No file part"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
if file.content_length > 10 * 1024 * 1024:
return jsonify({"error": "File size exceeds 6 MB"}), 400
print("after file access")
print("check if model is there in weights dir or not")
filename_without_extension = os.path.splitext(file.filename)[0]
unique_id = filename_without_extension
ensure_model_in_weights_dir(spk_id)
print("checking done for the model")
content_type_format_map = {
'audio/mpeg': 'mp3',
'audio/wav': 'wav',
'audio/x-wav': 'wav',
'audio/mp4': 'mp4',
'audio/x-m4a': 'mp4',
}
# Default to 'mp3' if content type is unknown (or adjust as needed)
audio_format = content_type_format_map.get(file.content_type, 'mp3')
# Convert the uploaded file to an audio segment
audio = AudioSegment.from_file(io.BytesIO(file.read()), format=audio_format)
#audio = AudioSegment.from_file(io.BytesIO(file.read()), format="mp3") # Adjust format as necessary
file.seek(0) # Reset file pointer after reading
# Calculate audio length in minutes
audio_length_minutes = len(audio) / 60000.0 # pydub returns length in milliseconds
if audio_length_minutes > 5:
return jsonify({"error": "Audio length exceeds 5 minutes"}), 400
#created_files = []
# Save the file to a temporary path
#unique_id = str(uuid.uuid4())
print(unique_id)
filename = werkzeug.utils.secure_filename(file.filename)
input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio_{unique_id}.{filename.split('.')[-1]}")
file.save(input_audio_path)
#created_files.append(input_audio_path)
#split audio
task_status_tracker[unique_id] = {"status": "Processing: Step 1", "percentage": 30}
cut_vocal_and_inst(input_audio_path,spk_id,unique_id)
print("audio splitting performed")
vocal_path = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/vocals.wav"
inst = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/no_vocals.wav"
print("*****before making call to convert ", unique_id)
#task_status_tracker[unique_id] = "Processing: Step 2"
#output_queue = SimpleQueue()
ctx = get_context('spawn')
output_queue = ctx.Queue()
# Create and start the process
p = ctx.Process(target=worker, args=(spk_id, vocal_path, voice_transform, unique_id, output_queue,))
p.start()
# Wait for the process to finish and get the result
p.join()
print("*******waiting for process to complete ")
output_path = output_queue.get()
task_status_tracker[unique_id] = {"status": "Processing: Step 2", "percentage": 80}
#if isinstance(output_path, Exception):
# print("Exception in worker:", output_path)
#else:
# print("output path of converted voice", output_path)
#output_path = convert_voice(spk_id, vocal_path, voice_transform,unique_id)
output_path1= combine_vocal_and_inst(output_path,inst,unique_id)
processed_audio_storage[unique_id] = output_path1
session['processed_audio_id'] = unique_id
task_status_tracker[unique_id] = {"status": "Finalizing", "percentage": 100}
print(output_path1)
#created_files.extend([vocal_path, inst, output_path])
#upload_to_do(output_path1)
image_path = 'singer.jpg'
os.makedirs("output/result", exist_ok=True)
output_dir="output/result"
mp4_path = merge_audio_image(output_path1, image_path, output_dir, unique_id)
upload_to_do(mp4_path)
task_status_tracker[unique_id]["status"] = "Completed"
print("file uploaded to Digital ocean space")
return jsonify({"message": "File processed successfully", "audio_id": unique_id}), 200
finally:
request_semaphore.release()
#if os.path.exists(output_path1):
# return send_file(output_path1, as_attachment=True)
#else:
# return jsonify({"error": "File not found."}), 404
def convert_voice_thread_safe(spk_id, vocal_path, voice_transform, unique_id):
with convert_voice_lock:
return convert_voice(spk_id, vocal_path, voice_transform, unique_id)
def get_vc_safe(sid, to_return_protect0):
with convert_voice_lock:
return get_vc(sid, to_return_protect0)
@app.route('/')
def upload_form():
return render_template('ui.html')
@app.route('/get_processed_audio/<audio_id>')
def get_processed_audio(audio_id):
# Retrieve the path from temporary storage or session
if audio_id in processed_audio_storage:
file_path = processed_audio_storage[audio_id]
return send_file(file_path, as_attachment=True)
return jsonify({"error": "File not found."}), 404
def worker(spk_id, input_audio_path, voice_transform, unique_id, output_queue):
try:
output_audio_path = convert_voice(spk_id, input_audio_path, voice_transform, unique_id)
print("output in worker for audio file", output_audio_path)
output_queue.put(output_audio_path)
print("added to output queue")
except Exception as e:
print("exception in adding to queue")
output_queue.put(e) # Send the exception to the main process for debugging
def convert_voice(spk_id, input_audio_path, voice_transform,unique_id):
get_vc(spk_id,0.5)
print("*****before makinf call to vc ", unique_id)
output_audio_path = vc_single(
sid=0,
input_audio_path=input_audio_path,
f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key
f0_file=None ,
f0_method="rmvpe",
file_index=spk_id, # Assuming file_index_path corresponds to file_index
index_rate=0.75,
filter_radius=3,
resample_sr=0,
rms_mix_rate=0.25,
protect=0.33, # Adjusted from protect_rate to protect to match the function signature,
unique_id=unique_id
)
print(output_audio_path)
return output_audio_path
def cut_vocal_and_inst(audio_path,spk_id,unique_id):
vocal_path = "output/result/audio.wav"
os.makedirs("output/result", exist_ok=True)
#wavfile.write(vocal_path, audio_data[0], audio_data[1])
#logs.append("Starting the audio splitting process...")
#yield "\n".join(logs), None, None
print("before executing splitter")
command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output/{spk_id}_{unique_id}"
env = os.environ.copy()
# Add or modify the environment variable for this subprocess
env["CUDA_VISIBLE_DEVICES"] = "0"
#result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
print("Demucs process failed:", result.stderr)
else:
print("Demucs process completed successfully.")
print("after executing splitter")
#for line in result.stdout:
# logs.append(line)
# yield "\n".join(logs), None, None
print(result.stdout)
vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
#logs.append("Audio splitting complete.")
def combine_vocal_and_inst(vocal_path, inst_path, output_path):
vocal_volume=1
inst_volume=1
os.makedirs("output/result", exist_ok=True)
# Assuming vocal_path and inst_path are now directly passed as arguments
output_path = f"output/result/{output_path}.mp3"
#command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
#command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
# Load the audio files
print(vocal_path)
print(inst_path)
vocal = AudioSegment.from_file(vocal_path)
instrumental = AudioSegment.from_file(inst_path)
# Overlay the vocal track on top of the instrumental track
combined = vocal.overlay(instrumental)
# Export the result
combined.export(output_path, format="mp3")
#result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return output_path
def vc_single(
sid,
input_audio_path,
f0_up_key,
f0_file,
f0_method,
file_index,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
unique_id
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model, version, cpt
print("***** in vc ", unique_id)
try:
logs = []
print(f"Converting...")
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
print(f"found audio ")
f0_up_key = int(f0_up_key)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
print("loaded hubert")
if_f0 = 1
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file
)
# Get the current thread's name or ID
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
index_info = (
"Using index:%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
print("writing to FS")
#output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed
# Assuming 'unique_id' is passed to convert_voice function along with 'sid'
print("***** before writing to file outout ", unique_id)
output_file_path = os.path.join("output", f"converted_audio_{sid}_{unique_id}.wav") # Adjust path as needed
print("******* output file path ",output_file_path)
os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist
print("create dir")
# Save the audio file using the target sampling rate
sf.write(output_file_path, audio_opt, tgt_sr)
print("wrote to FS")
# Return the path to the saved file along with any other information
return output_file_path
except:
info = traceback.format_exc()
return info, (None, None)
def get_vc(sid, to_return_protect0):
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
if sid == "" or sid == []:
global hubert_model
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
if_f0 = cpt[sid].get("f0", 1)
version = cpt[sid].get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt[sid]["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt[sid]["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return (
gr.Slider.update(maximum=2333, visible=False),
gr.Slider.update(visible=True),
gr.Dropdown.update(choices=sorted(weights_index), value=""),
gr.Markdown.update(value="# <center> No model selected")
)
print(f"Loading {sid} model...")
selected_model = sid[:-4]
cpt[sid] = torch.load(os.path.join(weight_root, sid), map_location="cpu")
tgt_sr = cpt[sid]["config"][-1]
cpt[sid]["config"][-3] = cpt[sid]["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt[sid].get("f0", 1)
if if_f0 == 0:
to_return_protect0 = {
"visible": False,
"value": 0.5,
"__type__": "update",
}
else:
to_return_protect0 = {
"visible": True,
"value": to_return_protect0,
"__type__": "update",
}
version = cpt[sid].get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt[sid]["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt[sid]["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt[sid]["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt[sid]["config"][-3]
weights_index = []
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
if weights_index == []:
selected_index = gr.Dropdown.update(value="")
else:
selected_index = gr.Dropdown.update(value=weights_index[0])
for index, model_index in enumerate(weights_index):
if selected_model in model_index:
selected_index = gr.Dropdown.update(value=weights_index[index])
break
return (
gr.Slider.update(maximum=n_spk, visible=True),
to_return_protect0,
selected_index,
gr.Markdown.update(
f'## <center> {selected_model}\n'+
f'### <center> RVC {version} Model'
)
)
if __name__ == '__main__':
app.run(debug=False, port=5000,host='0.0.0.0')