Spaces:
Sleeping
Sleeping
Mila
commited on
Commit
•
3cff715
1
Parent(s):
3139db4
still broken?
Browse files- analogy_train.py +300 -300
- app_context.py +260 -0
- flan-t5-train.py +234 -234
- word_embedding.py +6 -0
analogy_train.py
CHANGED
@@ -1,301 +1,301 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import math
|
3 |
-
import spacy
|
4 |
-
from datasets import load_dataset
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from sentence_transformers import InputExample
|
7 |
-
from sentence_transformers import losses
|
8 |
-
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
9 |
-
from transformers import TrainingArguments, Trainer
|
10 |
-
import torch
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from torch.utils.data import DataLoader
|
13 |
-
import numpy as np
|
14 |
-
import evaluate
|
15 |
-
import nltk
|
16 |
-
from nltk.corpus import stopwords
|
17 |
-
import subprocess
|
18 |
-
import sys
|
19 |
-
from transformers import DataCollatorWithPadding
|
20 |
-
from transformers import TrainingArguments
|
21 |
-
from transformers import (
|
22 |
-
BertModel,
|
23 |
-
BertTokenizerFast,
|
24 |
-
Trainer,
|
25 |
-
EvalPrediction
|
26 |
-
)
|
27 |
-
|
28 |
-
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
29 |
-
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
30 |
-
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
31 |
-
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
32 |
-
# nltk.download('stopwords')
|
33 |
-
# nlp = spacy.load("en_core_web_sm")
|
34 |
-
# stops = stopwords.words("english")
|
35 |
-
|
36 |
-
# answer = "Pizza"
|
37 |
-
guesses = []
|
38 |
-
answer = "Pizza"
|
39 |
-
|
40 |
-
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
41 |
-
metric = evaluate.load("accuracy")
|
42 |
-
|
43 |
-
def tokenize_function(examples):
|
44 |
-
return tokenizer(examples["stem"], padding="max_length", truncation=True)
|
45 |
-
|
46 |
-
|
47 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
-
def mean_pooling(model_output, attention_mask):
|
49 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
50 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
-
|
53 |
-
|
54 |
-
def compute_metrics(eval_pred):
|
55 |
-
logits, labels = eval_pred
|
56 |
-
predictions = np.argmax(logits, axis=-1)
|
57 |
-
metric = evaluate.load("accuracy")
|
58 |
-
return metric.compute(predictions=predictions, references=labels)
|
59 |
-
|
60 |
-
|
61 |
-
# def training():
|
62 |
-
# dataset_id = "relbert/analogy_questions"
|
63 |
-
# dataset_sub = "bats"
|
64 |
-
# print("GETTING DATASET")
|
65 |
-
# raw_dataset = load_dataset(dataset_id, dataset_sub)
|
66 |
-
# # data_metric = evaluate.load(dataset_id, dataset_sub)
|
67 |
-
# checkpoint = "bert-base-uncased"
|
68 |
-
# model = BertModel.from_pretrained(checkpoint)
|
69 |
-
# # dataset = dataset["train"]
|
70 |
-
# # tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
71 |
-
# # print(raw_dataset)
|
72 |
-
# test_data = raw_dataset["test"]
|
73 |
-
# # print(test_data["stem"])
|
74 |
-
# all_answers = []
|
75 |
-
# for answer in raw_dataset["answer"]:
|
76 |
-
# answer = raw_dataset["choice"][answer]
|
77 |
-
# raw_dataset = raw_dataset.add_column("label", all_answers)
|
78 |
-
|
79 |
-
|
80 |
-
# print(raw_dataset)
|
81 |
-
# print(raw_dataset["label"])
|
82 |
-
# dataset = raw_dataset.map(
|
83 |
-
# lambda x: tokenizer(x["stem"], truncation=True),
|
84 |
-
# batched=True,
|
85 |
-
# )
|
86 |
-
# print(dataset)
|
87 |
-
# dataset = dataset.remove_columns(["stem", "answer", "choice"])
|
88 |
-
# dataset = dataset.rename_column("label", "labels")
|
89 |
-
# dataset = dataset.with_format("torch")
|
90 |
-
|
91 |
-
# training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch")
|
92 |
-
|
93 |
-
# print(dataset)
|
94 |
-
# # print(f"- The {dataset_id} dataset has {dataset.num_rows} examples.")
|
95 |
-
# # print(f"- Each example is a {type(dataset[0])} with a {type(dataset[0]['stem'])} as value.")
|
96 |
-
# # print(f"- Examples look like this: {dataset[0]}")
|
97 |
-
|
98 |
-
# # small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
99 |
-
# # small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
100 |
-
|
101 |
-
# # dataset = dataset["train"].map(tokenize_function, batched=True)
|
102 |
-
# # dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
|
103 |
-
# # dataset.format['type']
|
104 |
-
|
105 |
-
# # tokenized_news = dataset.map(tokenize_function, batched=True)
|
106 |
-
|
107 |
-
# # model = AutoModelForSequenceClassification.from_pretrained("sentence-transformers/all-MiniLM-L6-v2", num_labels=2)
|
108 |
-
|
109 |
-
# # print(dataset)
|
110 |
-
|
111 |
-
# # Choose the appropriate device based on availability (CUDA or CPU)
|
112 |
-
# # gpu_available = torch.cuda.is_available()
|
113 |
-
# # device = torch.device("cuda" if gpu_available else "cpu")
|
114 |
-
# # model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
|
115 |
-
|
116 |
-
# # tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
117 |
-
# # print(tokenized_datasets)
|
118 |
-
# # # small_train_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
119 |
-
# # # small_eval_dataset = tokenized_datasets["validation"].shuffle(seed=42).select(range(1000))
|
120 |
-
|
121 |
-
# # model = model.to(device)
|
122 |
-
|
123 |
-
# # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
124 |
-
# # training_args = TrainingArguments(output_dir="test_trainer")
|
125 |
-
|
126 |
-
# trainer = Trainer(
|
127 |
-
# model=model,
|
128 |
-
# args=training_args,
|
129 |
-
# train_dataset=dataset["test"],
|
130 |
-
# eval_dataset=dataset["validation"],
|
131 |
-
# compute_metrics=compute_metrics,
|
132 |
-
# )
|
133 |
-
|
134 |
-
# output = trainer.train()
|
135 |
-
|
136 |
-
# # train_examples = []
|
137 |
-
# # train_data = dataset["train"]
|
138 |
-
# # # For agility we only 1/2 of our available data
|
139 |
-
# # n_examples = dataset["train"].num_rows // 2
|
140 |
-
|
141 |
-
# # for i in range(n_examples):
|
142 |
-
# # example = train_data[i]
|
143 |
-
# # # example_opposite = dataset_clean[-(i)]
|
144 |
-
# # # print(example["text"])
|
145 |
-
# # train_examples.append(InputExample(texts=[example['stem'], example]))
|
146 |
-
|
147 |
-
|
148 |
-
# # train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
149 |
-
|
150 |
-
# # print("END DATALOADER")
|
151 |
-
|
152 |
-
# # # print(train_examples)
|
153 |
-
|
154 |
-
# # embeddings = finetune(train_dataloader)
|
155 |
-
# print(output)
|
156 |
-
|
157 |
-
# model.save("bert-analogies")
|
158 |
-
|
159 |
-
# model.save_to_hub("smhavens/bert-base-analogies")
|
160 |
-
# return output
|
161 |
-
|
162 |
-
|
163 |
-
# def finetune(train_dataloader):
|
164 |
-
# # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
165 |
-
# model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
166 |
-
# model = SentenceTransformer(model_id)
|
167 |
-
# device = torch.device('cuda:0')
|
168 |
-
# model = model.to(device)
|
169 |
-
|
170 |
-
# # training_args = TrainingArguments(output_dir="test_trainer")
|
171 |
-
|
172 |
-
# # USE THIS LINK
|
173 |
-
# # https://huggingface.co/blog/how-to-train-sentence-transformers
|
174 |
-
|
175 |
-
# train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
|
176 |
-
|
177 |
-
# print("BEGIN FIT")
|
178 |
-
|
179 |
-
# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
180 |
-
|
181 |
-
# model.save("bert-analogies")
|
182 |
-
|
183 |
-
# model.save_to_hub("smhavens/bert-base-analogies")
|
184 |
-
# return 0
|
185 |
-
|
186 |
-
def training():
|
187 |
-
dataset_id = "relbert/analogy_questions"
|
188 |
-
dataset_sub = "bats"
|
189 |
-
print("GETTING DATASET")
|
190 |
-
dataset = load_dataset(dataset_id, dataset_sub)
|
191 |
-
# dataset = dataset["train"]
|
192 |
-
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
193 |
-
|
194 |
-
print(f"- The {dataset_id} dataset has {dataset['test'].num_rows} examples.")
|
195 |
-
print(f"- Each example is a {type(dataset['test'][0])} with a {type(dataset['test'][0]['stem'])} as value.")
|
196 |
-
print(f"- Examples look like this: {dataset['test'][0]}")
|
197 |
-
|
198 |
-
train_examples = []
|
199 |
-
train_data = dataset["test"]
|
200 |
-
# For agility we only 1/2 of our available data
|
201 |
-
n_examples = dataset["test"].num_rows // 2
|
202 |
-
|
203 |
-
for i in range(n_examples):
|
204 |
-
example = train_data[i]
|
205 |
-
temp_word_1 = example["stem"][0]
|
206 |
-
temp_word_2 = example["stem"][1]
|
207 |
-
temp_word_3 = example["choice"][example["answer"]][0]
|
208 |
-
temp_word_4 = example["choice"][example["answer"]][1]
|
209 |
-
comp1 = f"{temp_word_1} to {temp_word_2}"
|
210 |
-
comp2 = f"{temp_word_3} to {temp_word_4}"
|
211 |
-
# example_opposite = dataset_clean[-(i)]
|
212 |
-
# print(example["text"])
|
213 |
-
train_examples.append(InputExample(texts=[comp1, comp2]))
|
214 |
-
|
215 |
-
|
216 |
-
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
217 |
-
|
218 |
-
print("END DATALOADER")
|
219 |
-
|
220 |
-
# print(train_examples)
|
221 |
-
|
222 |
-
embeddings = finetune(train_dataloader)
|
223 |
-
|
224 |
-
return (dataset['test'].num_rows, type(dataset['test'][0]), type(dataset['test'][0]['stem']), dataset['test'][0], embeddings)
|
225 |
-
|
226 |
-
|
227 |
-
def finetune(train_dataloader):
|
228 |
-
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
229 |
-
model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
230 |
-
model = SentenceTransformer(model_id)
|
231 |
-
device = torch.device('cuda:0')
|
232 |
-
model = model.to(device)
|
233 |
-
|
234 |
-
# training_args = TrainingArguments(output_dir="test_trainer")
|
235 |
-
|
236 |
-
# USE THIS LINK
|
237 |
-
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
238 |
-
|
239 |
-
train_loss = losses.MegaBatchMarginLoss(model=model)
|
240 |
-
|
241 |
-
print("BEGIN FIT")
|
242 |
-
|
243 |
-
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
244 |
-
|
245 |
-
model.save("bert-analogies")
|
246 |
-
|
247 |
-
# model.save_to_hub("smhavens/bert-base-analogies")
|
248 |
-
# accuracy = compute_metrics(eval, metric)
|
249 |
-
return 0
|
250 |
-
|
251 |
-
def greet(name):
|
252 |
-
return "Hello " + name + "!!"
|
253 |
-
|
254 |
-
def check_answer(guess:str):
|
255 |
-
global guesses
|
256 |
-
global answer
|
257 |
-
guesses.append(guess)
|
258 |
-
output = ""
|
259 |
-
for guess in guesses:
|
260 |
-
output += ("- " + guess + "\n")
|
261 |
-
output = output[:-1]
|
262 |
-
|
263 |
-
if guess.lower() == answer.lower():
|
264 |
-
return "Correct!", output
|
265 |
-
else:
|
266 |
-
return "Try again!", output
|
267 |
-
|
268 |
-
def main():
|
269 |
-
print("BEGIN")
|
270 |
-
word1 = "Black"
|
271 |
-
word2 = "White"
|
272 |
-
word3 = "Sun"
|
273 |
-
global answer
|
274 |
-
answer = "Moon"
|
275 |
-
global guesses
|
276 |
-
|
277 |
-
num_rows, data_type, value, example, embeddings = training()
|
278 |
-
|
279 |
-
# prompt = f"{word1} is to {word2} as {word3} is to ____"
|
280 |
-
# with gr.Blocks() as iface:
|
281 |
-
# gr.Markdown(prompt)
|
282 |
-
# with gr.Tab("Guess"):
|
283 |
-
# text_input = gr.Textbox()
|
284 |
-
# text_output = gr.Textbox()
|
285 |
-
# text_button = gr.Button("Submit")
|
286 |
-
# with gr.Accordion("Open for previous guesses"):
|
287 |
-
# text_guesses = gr.Textbox()
|
288 |
-
# with gr.Tab("Testing"):
|
289 |
-
# gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}.
|
290 |
-
# An example is {example}.
|
291 |
-
# The Embeddings are {embeddings}.""")
|
292 |
-
# text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
|
293 |
-
# # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
294 |
-
# iface.launch()
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
if __name__ == "__main__":
|
301 |
main()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import math
|
3 |
+
import spacy
|
4 |
+
from datasets import load_dataset
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sentence_transformers import InputExample
|
7 |
+
from sentence_transformers import losses
|
8 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
9 |
+
from transformers import TrainingArguments, Trainer
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
import numpy as np
|
14 |
+
import evaluate
|
15 |
+
import nltk
|
16 |
+
from nltk.corpus import stopwords
|
17 |
+
import subprocess
|
18 |
+
import sys
|
19 |
+
from transformers import DataCollatorWithPadding
|
20 |
+
from transformers import TrainingArguments
|
21 |
+
from transformers import (
|
22 |
+
BertModel,
|
23 |
+
BertTokenizerFast,
|
24 |
+
Trainer,
|
25 |
+
EvalPrediction
|
26 |
+
)
|
27 |
+
|
28 |
+
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
29 |
+
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
30 |
+
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
31 |
+
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
32 |
+
# nltk.download('stopwords')
|
33 |
+
# nlp = spacy.load("en_core_web_sm")
|
34 |
+
# stops = stopwords.words("english")
|
35 |
+
|
36 |
+
# answer = "Pizza"
|
37 |
+
guesses = []
|
38 |
+
answer = "Pizza"
|
39 |
+
|
40 |
+
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
41 |
+
metric = evaluate.load("accuracy")
|
42 |
+
|
43 |
+
def tokenize_function(examples):
|
44 |
+
return tokenizer(examples["stem"], padding="max_length", truncation=True)
|
45 |
+
|
46 |
+
|
47 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
+
def mean_pooling(model_output, attention_mask):
|
49 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
50 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
+
|
53 |
+
|
54 |
+
def compute_metrics(eval_pred):
|
55 |
+
logits, labels = eval_pred
|
56 |
+
predictions = np.argmax(logits, axis=-1)
|
57 |
+
metric = evaluate.load("accuracy")
|
58 |
+
return metric.compute(predictions=predictions, references=labels)
|
59 |
+
|
60 |
+
|
61 |
+
# def training():
|
62 |
+
# dataset_id = "relbert/analogy_questions"
|
63 |
+
# dataset_sub = "bats"
|
64 |
+
# print("GETTING DATASET")
|
65 |
+
# raw_dataset = load_dataset(dataset_id, dataset_sub)
|
66 |
+
# # data_metric = evaluate.load(dataset_id, dataset_sub)
|
67 |
+
# checkpoint = "bert-base-uncased"
|
68 |
+
# model = BertModel.from_pretrained(checkpoint)
|
69 |
+
# # dataset = dataset["train"]
|
70 |
+
# # tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
71 |
+
# # print(raw_dataset)
|
72 |
+
# test_data = raw_dataset["test"]
|
73 |
+
# # print(test_data["stem"])
|
74 |
+
# all_answers = []
|
75 |
+
# for answer in raw_dataset["answer"]:
|
76 |
+
# answer = raw_dataset["choice"][answer]
|
77 |
+
# raw_dataset = raw_dataset.add_column("label", all_answers)
|
78 |
+
|
79 |
+
|
80 |
+
# print(raw_dataset)
|
81 |
+
# print(raw_dataset["label"])
|
82 |
+
# dataset = raw_dataset.map(
|
83 |
+
# lambda x: tokenizer(x["stem"], truncation=True),
|
84 |
+
# batched=True,
|
85 |
+
# )
|
86 |
+
# print(dataset)
|
87 |
+
# dataset = dataset.remove_columns(["stem", "answer", "choice"])
|
88 |
+
# dataset = dataset.rename_column("label", "labels")
|
89 |
+
# dataset = dataset.with_format("torch")
|
90 |
+
|
91 |
+
# training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch")
|
92 |
+
|
93 |
+
# print(dataset)
|
94 |
+
# # print(f"- The {dataset_id} dataset has {dataset.num_rows} examples.")
|
95 |
+
# # print(f"- Each example is a {type(dataset[0])} with a {type(dataset[0]['stem'])} as value.")
|
96 |
+
# # print(f"- Examples look like this: {dataset[0]}")
|
97 |
+
|
98 |
+
# # small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
99 |
+
# # small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
100 |
+
|
101 |
+
# # dataset = dataset["train"].map(tokenize_function, batched=True)
|
102 |
+
# # dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
|
103 |
+
# # dataset.format['type']
|
104 |
+
|
105 |
+
# # tokenized_news = dataset.map(tokenize_function, batched=True)
|
106 |
+
|
107 |
+
# # model = AutoModelForSequenceClassification.from_pretrained("sentence-transformers/all-MiniLM-L6-v2", num_labels=2)
|
108 |
+
|
109 |
+
# # print(dataset)
|
110 |
+
|
111 |
+
# # Choose the appropriate device based on availability (CUDA or CPU)
|
112 |
+
# # gpu_available = torch.cuda.is_available()
|
113 |
+
# # device = torch.device("cuda" if gpu_available else "cpu")
|
114 |
+
# # model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
|
115 |
+
|
116 |
+
# # tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
117 |
+
# # print(tokenized_datasets)
|
118 |
+
# # # small_train_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
119 |
+
# # # small_eval_dataset = tokenized_datasets["validation"].shuffle(seed=42).select(range(1000))
|
120 |
+
|
121 |
+
# # model = model.to(device)
|
122 |
+
|
123 |
+
# # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
124 |
+
# # training_args = TrainingArguments(output_dir="test_trainer")
|
125 |
+
|
126 |
+
# trainer = Trainer(
|
127 |
+
# model=model,
|
128 |
+
# args=training_args,
|
129 |
+
# train_dataset=dataset["test"],
|
130 |
+
# eval_dataset=dataset["validation"],
|
131 |
+
# compute_metrics=compute_metrics,
|
132 |
+
# )
|
133 |
+
|
134 |
+
# output = trainer.train()
|
135 |
+
|
136 |
+
# # train_examples = []
|
137 |
+
# # train_data = dataset["train"]
|
138 |
+
# # # For agility we only 1/2 of our available data
|
139 |
+
# # n_examples = dataset["train"].num_rows // 2
|
140 |
+
|
141 |
+
# # for i in range(n_examples):
|
142 |
+
# # example = train_data[i]
|
143 |
+
# # # example_opposite = dataset_clean[-(i)]
|
144 |
+
# # # print(example["text"])
|
145 |
+
# # train_examples.append(InputExample(texts=[example['stem'], example]))
|
146 |
+
|
147 |
+
|
148 |
+
# # train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
149 |
+
|
150 |
+
# # print("END DATALOADER")
|
151 |
+
|
152 |
+
# # # print(train_examples)
|
153 |
+
|
154 |
+
# # embeddings = finetune(train_dataloader)
|
155 |
+
# print(output)
|
156 |
+
|
157 |
+
# model.save("bert-analogies")
|
158 |
+
|
159 |
+
# model.save_to_hub("smhavens/bert-base-analogies")
|
160 |
+
# return output
|
161 |
+
|
162 |
+
|
163 |
+
# def finetune(train_dataloader):
|
164 |
+
# # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
165 |
+
# model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
166 |
+
# model = SentenceTransformer(model_id)
|
167 |
+
# device = torch.device('cuda:0')
|
168 |
+
# model = model.to(device)
|
169 |
+
|
170 |
+
# # training_args = TrainingArguments(output_dir="test_trainer")
|
171 |
+
|
172 |
+
# # USE THIS LINK
|
173 |
+
# # https://huggingface.co/blog/how-to-train-sentence-transformers
|
174 |
+
|
175 |
+
# train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
|
176 |
+
|
177 |
+
# print("BEGIN FIT")
|
178 |
+
|
179 |
+
# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
180 |
+
|
181 |
+
# model.save("bert-analogies")
|
182 |
+
|
183 |
+
# model.save_to_hub("smhavens/bert-base-analogies")
|
184 |
+
# return 0
|
185 |
+
|
186 |
+
def training():
|
187 |
+
dataset_id = "relbert/analogy_questions"
|
188 |
+
dataset_sub = "bats"
|
189 |
+
print("GETTING DATASET")
|
190 |
+
dataset = load_dataset(dataset_id, dataset_sub)
|
191 |
+
# dataset = dataset["train"]
|
192 |
+
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
193 |
+
|
194 |
+
print(f"- The {dataset_id} dataset has {dataset['test'].num_rows} examples.")
|
195 |
+
print(f"- Each example is a {type(dataset['test'][0])} with a {type(dataset['test'][0]['stem'])} as value.")
|
196 |
+
print(f"- Examples look like this: {dataset['test'][0]}")
|
197 |
+
|
198 |
+
train_examples = []
|
199 |
+
train_data = dataset["test"]
|
200 |
+
# For agility we only 1/2 of our available data
|
201 |
+
n_examples = dataset["test"].num_rows // 2
|
202 |
+
|
203 |
+
for i in range(n_examples):
|
204 |
+
example = train_data[i]
|
205 |
+
temp_word_1 = example["stem"][0]
|
206 |
+
temp_word_2 = example["stem"][1]
|
207 |
+
temp_word_3 = example["choice"][example["answer"]][0]
|
208 |
+
temp_word_4 = example["choice"][example["answer"]][1]
|
209 |
+
comp1 = f"{temp_word_1} to {temp_word_2}"
|
210 |
+
comp2 = f"{temp_word_3} to {temp_word_4}"
|
211 |
+
# example_opposite = dataset_clean[-(i)]
|
212 |
+
# print(example["text"])
|
213 |
+
train_examples.append(InputExample(texts=[comp1, comp2]))
|
214 |
+
|
215 |
+
|
216 |
+
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
217 |
+
|
218 |
+
print("END DATALOADER")
|
219 |
+
|
220 |
+
# print(train_examples)
|
221 |
+
|
222 |
+
embeddings = finetune(train_dataloader)
|
223 |
+
|
224 |
+
return (dataset['test'].num_rows, type(dataset['test'][0]), type(dataset['test'][0]['stem']), dataset['test'][0], embeddings)
|
225 |
+
|
226 |
+
|
227 |
+
def finetune(train_dataloader):
|
228 |
+
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
229 |
+
model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
230 |
+
model = SentenceTransformer(model_id)
|
231 |
+
device = torch.device('cuda:0')
|
232 |
+
model = model.to(device)
|
233 |
+
|
234 |
+
# training_args = TrainingArguments(output_dir="test_trainer")
|
235 |
+
|
236 |
+
# USE THIS LINK
|
237 |
+
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
238 |
+
|
239 |
+
train_loss = losses.MegaBatchMarginLoss(model=model)
|
240 |
+
|
241 |
+
print("BEGIN FIT")
|
242 |
+
|
243 |
+
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
244 |
+
|
245 |
+
model.save("bert-analogies")
|
246 |
+
|
247 |
+
# model.save_to_hub("smhavens/bert-base-analogies")
|
248 |
+
# accuracy = compute_metrics(eval, metric)
|
249 |
+
return 0
|
250 |
+
|
251 |
+
def greet(name):
|
252 |
+
return "Hello " + name + "!!"
|
253 |
+
|
254 |
+
def check_answer(guess:str):
|
255 |
+
global guesses
|
256 |
+
global answer
|
257 |
+
guesses.append(guess)
|
258 |
+
output = ""
|
259 |
+
for guess in guesses:
|
260 |
+
output += ("- " + guess + "\n")
|
261 |
+
output = output[:-1]
|
262 |
+
|
263 |
+
if guess.lower() == answer.lower():
|
264 |
+
return "Correct!", output
|
265 |
+
else:
|
266 |
+
return "Try again!", output
|
267 |
+
|
268 |
+
def main():
|
269 |
+
print("BEGIN")
|
270 |
+
word1 = "Black"
|
271 |
+
word2 = "White"
|
272 |
+
word3 = "Sun"
|
273 |
+
global answer
|
274 |
+
answer = "Moon"
|
275 |
+
global guesses
|
276 |
+
|
277 |
+
num_rows, data_type, value, example, embeddings = training()
|
278 |
+
|
279 |
+
# prompt = f"{word1} is to {word2} as {word3} is to ____"
|
280 |
+
# with gr.Blocks() as iface:
|
281 |
+
# gr.Markdown(prompt)
|
282 |
+
# with gr.Tab("Guess"):
|
283 |
+
# text_input = gr.Textbox()
|
284 |
+
# text_output = gr.Textbox()
|
285 |
+
# text_button = gr.Button("Submit")
|
286 |
+
# with gr.Accordion("Open for previous guesses"):
|
287 |
+
# text_guesses = gr.Textbox()
|
288 |
+
# with gr.Tab("Testing"):
|
289 |
+
# gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}.
|
290 |
+
# An example is {example}.
|
291 |
+
# The Embeddings are {embeddings}.""")
|
292 |
+
# text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
|
293 |
+
# # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
294 |
+
# iface.launch()
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
main()
|
app_context.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import math
|
3 |
import spacy
|
@@ -251,4 +252,263 @@ def main():
|
|
251 |
|
252 |
|
253 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
main()
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
import gradio as gr
|
3 |
import math
|
4 |
import spacy
|
|
|
252 |
|
253 |
|
254 |
if __name__ == "__main__":
|
255 |
+
=======
|
256 |
+
import gradio as gr
|
257 |
+
import math
|
258 |
+
import spacy
|
259 |
+
from datasets import load_dataset
|
260 |
+
from sentence_transformers import SentenceTransformer
|
261 |
+
from sentence_transformers import InputExample
|
262 |
+
from sentence_transformers import losses
|
263 |
+
from sentence_transformers import util
|
264 |
+
from transformers import pipeline, T5Tokenizer
|
265 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
266 |
+
from transformers import TrainingArguments, Trainer, T5ForConditionalGeneration
|
267 |
+
import torch
|
268 |
+
import torch.nn.functional as F
|
269 |
+
from torch.utils.data import DataLoader
|
270 |
+
import numpy as np
|
271 |
+
import evaluate
|
272 |
+
import nltk
|
273 |
+
from nltk.corpus import stopwords
|
274 |
+
import subprocess
|
275 |
+
import sys
|
276 |
+
import random
|
277 |
+
from textwrap import fill
|
278 |
+
|
279 |
+
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
280 |
+
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
281 |
+
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
282 |
+
model_base = "results/checkpoint-17000"
|
283 |
+
nltk.download('stopwords')
|
284 |
+
nlp = spacy.load("en_core_web_sm")
|
285 |
+
stops = stopwords.words("english")
|
286 |
+
ROMAN_CONSTANTS = (
|
287 |
+
( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
|
288 |
+
( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
|
289 |
+
( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
|
290 |
+
( "", "M", "MM", "MMM", "", "", "-", "", "", "" ),
|
291 |
+
( "", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix" ),
|
292 |
+
( "", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc" ),
|
293 |
+
( "", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm" ),
|
294 |
+
( "", "m", "mm", "mmm", "", "", "-", "", "", "" ),
|
295 |
+
)
|
296 |
+
|
297 |
+
# answer = "Pizza"
|
298 |
+
guesses = []
|
299 |
+
return_guesses = []
|
300 |
+
answer = "Moon"
|
301 |
+
word1 = "Black"
|
302 |
+
word2 = "White"
|
303 |
+
word3 = "Sun"
|
304 |
+
base_prompts = ["Sun is to Moon as ", "Black is to White as ", "Atom is to Element as",
|
305 |
+
"Athens is to Greece as ", "Cat is to Dog as ", "Robin is to Bird as",
|
306 |
+
"Hunger is to Ambition as "]
|
307 |
+
|
308 |
+
|
309 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
310 |
+
def mean_pooling(model_output, attention_mask):
|
311 |
+
token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings
|
312 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
313 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
314 |
+
|
315 |
+
|
316 |
+
def normalize(comment, lowercase, remove_stopwords):
|
317 |
+
if lowercase:
|
318 |
+
comment = comment.lower()
|
319 |
+
comment = nlp(comment)
|
320 |
+
lemmatized = list()
|
321 |
+
for word in comment:
|
322 |
+
lemma = word.lemma_.strip()
|
323 |
+
if lemma:
|
324 |
+
if not remove_stopwords or (remove_stopwords and lemma not in stops):
|
325 |
+
lemmatized.append(lemma)
|
326 |
+
return " ".join(lemmatized)
|
327 |
+
|
328 |
+
|
329 |
+
# def tokenize_function(examples):
|
330 |
+
# return tokenizer(examples["text"])
|
331 |
+
|
332 |
+
|
333 |
+
def compute_metrics(eval_pred):
|
334 |
+
logits, labels = eval_pred
|
335 |
+
predictions = np.argmax(logits, axis=-1)
|
336 |
+
metric = evaluate.load("accuracy")
|
337 |
+
return metric.compute(predictions=predictions, references=labels)
|
338 |
+
|
339 |
+
|
340 |
+
def get_model():
|
341 |
+
global model_base
|
342 |
+
# last_checkpoint = "./results/checkpoint-22500"
|
343 |
+
|
344 |
+
finetuned_model = T5ForConditionalGeneration.from_pretrained(model_base)
|
345 |
+
tokenizer = T5Tokenizer.from_pretrained(model_base)
|
346 |
+
# model = SentenceTransformer(model_base)
|
347 |
+
gpu_available = torch.cuda.is_available()
|
348 |
+
device = torch.device("cuda" if gpu_available else "cpu")
|
349 |
+
finetuned_model = finetuned_model.to(device)
|
350 |
+
return finetuned_model, tokenizer
|
351 |
+
|
352 |
+
|
353 |
+
def cosine_scores(model, sentence):
|
354 |
+
global word1
|
355 |
+
global word2
|
356 |
+
global word3
|
357 |
+
# sentence1 = f"{word1} is to {word2} as"
|
358 |
+
embeddings1 = model.encode(sentence, convert_to_tensor=True)
|
359 |
+
|
360 |
+
def embeddings(model, sentences, tokenizer):
|
361 |
+
global word1
|
362 |
+
global word2
|
363 |
+
global word3
|
364 |
+
global model_base
|
365 |
+
gpu_available = torch.cuda.is_available()
|
366 |
+
device = torch.device("cuda" if gpu_available else "cpu")
|
367 |
+
# device = torch.device('cuda:0')
|
368 |
+
# embeddings = model.encode(sentences)
|
369 |
+
question = "Please answer to this question: " + sentences
|
370 |
+
|
371 |
+
inputs = tokenizer(question, return_tensors="pt")
|
372 |
+
|
373 |
+
print(inputs)
|
374 |
+
# print(inputs.device)
|
375 |
+
print(model.device)
|
376 |
+
print(inputs['input_ids'].device)
|
377 |
+
print(inputs['attention_mask'].device)
|
378 |
+
|
379 |
+
inputs['attention_mask'] = inputs['attention_mask'].to(device)
|
380 |
+
inputs['input_ids'] = inputs['input_ids'].to(device)
|
381 |
+
|
382 |
+
outputs = model.generate(**inputs)
|
383 |
+
answer = tokenizer.decode(outputs[0])
|
384 |
+
answer = answer[6:-4]
|
385 |
+
# print(fill(answer, width=80))
|
386 |
+
|
387 |
+
print("ANSWER IS", answer)
|
388 |
+
|
389 |
+
return answer
|
390 |
+
|
391 |
+
|
392 |
+
def random_word(model, tokenizer):
|
393 |
+
global model_base
|
394 |
+
vocab = tokenizer.get_vocab()
|
395 |
+
# with open(model_base + '/vocab.txt', 'r') as file:
|
396 |
+
line = ""
|
397 |
+
# content = file.readlines()
|
398 |
+
length = tokenizer.vocab_size
|
399 |
+
# print(vocab)
|
400 |
+
while line == "":
|
401 |
+
rand_line = random.randrange(0, length)
|
402 |
+
# print("TRYING TO FIND", rand_line, "OUT OF", length, "WITH VOCAB OF TYPE", type(vocab))
|
403 |
+
for word, id in vocab.items():
|
404 |
+
if id == rand_line and word[0].isalpha() and word not in stops and word not in ROMAN_CONSTANTS:
|
405 |
+
# if vocab[rand_line][0].isalpha() and vocab[rand_line][:-1] not in stops and vocab[rand_line][:-1] not in ROMAN_CONSTANTS:
|
406 |
+
line = word
|
407 |
+
elif id == rand_line:
|
408 |
+
print(f"{word} is not alpha or is a stop word")
|
409 |
+
# for num, aline in enumerate(file, 1997):
|
410 |
+
# if random.randrange(num) and aline.isalpha():
|
411 |
+
# continue
|
412 |
+
# # elif not aline.isalpha():
|
413 |
+
|
414 |
+
# line = aline
|
415 |
+
print(line)
|
416 |
+
return line
|
417 |
+
|
418 |
+
|
419 |
+
def generate_prompt(model, tokenizer):
|
420 |
+
global word1
|
421 |
+
global word2
|
422 |
+
global word3
|
423 |
+
global answer
|
424 |
+
global base_prompts
|
425 |
+
word1 = random_word(model, tokenizer)
|
426 |
+
# word2 = random_word()
|
427 |
+
|
428 |
+
word2 = embeddings(model, f"{base_prompts[random.randint(0, len(base_prompts) - 1)]}{word1} is to ___.", tokenizer)
|
429 |
+
word3 = random_word(model, tokenizer)
|
430 |
+
sentence = f"{word1} is to {word2} as {word3} is to ___."
|
431 |
+
print(sentence)
|
432 |
+
answer = embeddings(model, sentence, tokenizer)
|
433 |
+
print("ANSWER IS", answer)
|
434 |
+
return f"# {word1} is to {word2} as {word3} is to ___."
|
435 |
+
# cosine_scores(model, sentence)
|
436 |
+
|
437 |
+
|
438 |
+
def greet(name):
|
439 |
+
return "Hello " + name + "!!"
|
440 |
+
|
441 |
+
def check_answer(guess:str):
|
442 |
+
global guesses
|
443 |
+
global answer
|
444 |
+
global return_guesses
|
445 |
+
global word1
|
446 |
+
global word2
|
447 |
+
global word3
|
448 |
+
|
449 |
+
model, tokenizer = get_model()
|
450 |
+
output = ""
|
451 |
+
protected_guess = guess
|
452 |
+
sentence = f"{word1} is to {word2} as [MASK] is to {guess}."
|
453 |
+
|
454 |
+
other_word = embeddings(model, sentence, tokenizer)
|
455 |
+
guesses.append(guess)
|
456 |
+
|
457 |
+
|
458 |
+
|
459 |
+
for guess in return_guesses:
|
460 |
+
output += ("- " + guess + "<br>")
|
461 |
+
|
462 |
+
# output = output[:-1]
|
463 |
+
prompt = f"{word1} is to {word2} as {word3} is to ___."
|
464 |
+
# print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
|
465 |
+
|
466 |
+
if protected_guess.lower() == answer.lower():
|
467 |
+
return_guesses.append(f"{protected_guess}: {word1} is to {word2} as {word3} is to {protected_guess}.")
|
468 |
+
output += f"<span style='color:green'>- {return_guesses[-1]}</span><br>"
|
469 |
+
new_prompt = generate_prompt(model, tokenizer)
|
470 |
+
return new_prompt, "Correct!", output
|
471 |
+
else:
|
472 |
+
return_guess = f"{protected_guess}: {word1} is to {word2} as {other_word} is to {protected_guess}."
|
473 |
+
return_guesses.append(return_guess)
|
474 |
+
output += ("- " + return_guess + " <br>")
|
475 |
+
return prompt, "Try again!", output
|
476 |
+
|
477 |
+
def main():
|
478 |
+
global word1
|
479 |
+
global word2
|
480 |
+
global word3
|
481 |
+
global answer
|
482 |
+
# answer = "Moon"
|
483 |
+
global guesses
|
484 |
+
|
485 |
+
|
486 |
+
# num_rows, data_type, value, example, embeddings = training()
|
487 |
+
# sent_embeddings = embeddings()
|
488 |
+
model, tokenizer = get_model()
|
489 |
+
generate_prompt(model, tokenizer)
|
490 |
+
|
491 |
+
prompt = f"{word1} is to {word2} as {word3} is to ____"
|
492 |
+
print(prompt)
|
493 |
+
print("TESTING EMBEDDINGS")
|
494 |
+
with gr.Blocks() as iface:
|
495 |
+
mark_question = gr.Markdown(prompt)
|
496 |
+
with gr.Tab("Guess"):
|
497 |
+
text_input = gr.Textbox()
|
498 |
+
text_output = gr.Textbox()
|
499 |
+
text_button = gr.Button("Submit")
|
500 |
+
with gr.Accordion("Open for previous guesses"):
|
501 |
+
text_guesses = gr.Markdown()
|
502 |
+
# with gr.Tab("Testing"):
|
503 |
+
# gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
|
504 |
+
text_button.click(check_answer, inputs=[text_input], outputs=[mark_question, text_output, text_guesses])
|
505 |
+
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
506 |
+
iface.launch()
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
if __name__ == "__main__":
|
513 |
+
>>>>>>> 5058aea (Problems)
|
514 |
main()
|
flan-t5-train.py
CHANGED
@@ -1,235 +1,235 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import math
|
3 |
-
from datasets import load_dataset
|
4 |
-
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
5 |
-
from transformers import TrainingArguments, Trainer
|
6 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
7 |
-
import torch
|
8 |
-
import torch.nn.functional as F
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
-
import numpy as np
|
11 |
-
import evaluate
|
12 |
-
import nltk
|
13 |
-
from nltk.corpus import stopwords
|
14 |
-
import subprocess
|
15 |
-
import sys
|
16 |
-
from transformers import T5Tokenizer, DataCollatorForSeq2Seq
|
17 |
-
from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer
|
18 |
-
from transformers import DataCollatorWithPadding, DistilBertTokenizerFast
|
19 |
-
from transformers import TrainingArguments
|
20 |
-
from transformers import (
|
21 |
-
BertModel,
|
22 |
-
BertTokenizerFast,
|
23 |
-
Trainer,
|
24 |
-
EvalPrediction
|
25 |
-
)
|
26 |
-
|
27 |
-
nltk.download("punkt", quiet=True)
|
28 |
-
metric = evaluate.load("rouge")
|
29 |
-
|
30 |
-
# Global Parameters
|
31 |
-
L_RATE = 3e-4
|
32 |
-
BATCH_SIZE = 8
|
33 |
-
PER_DEVICE_EVAL_BATCH = 4
|
34 |
-
WEIGHT_DECAY = 0.01
|
35 |
-
SAVE_TOTAL_LIM = 3
|
36 |
-
NUM_EPOCHS = 10
|
37 |
-
|
38 |
-
# Set up training arguments
|
39 |
-
training_args = Seq2SeqTrainingArguments(
|
40 |
-
output_dir="./results",
|
41 |
-
evaluation_strategy="epoch",
|
42 |
-
learning_rate=L_RATE,
|
43 |
-
per_device_train_batch_size=BATCH_SIZE,
|
44 |
-
per_device_eval_batch_size=PER_DEVICE_EVAL_BATCH,
|
45 |
-
weight_decay=WEIGHT_DECAY,
|
46 |
-
save_total_limit=SAVE_TOTAL_LIM,
|
47 |
-
num_train_epochs=NUM_EPOCHS,
|
48 |
-
predict_with_generate=True,
|
49 |
-
push_to_hub=False
|
50 |
-
)
|
51 |
-
|
52 |
-
model_id = "google/flan-t5-base"
|
53 |
-
tokenizer = T5Tokenizer.from_pretrained(model_id)
|
54 |
-
# tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
55 |
-
# metric = evaluate.load("accuracy")
|
56 |
-
|
57 |
-
def tokenize_function(examples):
|
58 |
-
return tokenizer(examples["stem"], padding="max_length", truncation=True)
|
59 |
-
|
60 |
-
|
61 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
62 |
-
def mean_pooling(model_output, attention_mask):
|
63 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
64 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
65 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
66 |
-
|
67 |
-
|
68 |
-
# def compute_metrics(eval_pred):
|
69 |
-
# logits, labels = eval_pred
|
70 |
-
# predictions = np.argmax(logits, axis=-1)
|
71 |
-
# metric = evaluate.load("accuracy")
|
72 |
-
# return metric.compute(predictions=predictions, references=labels)
|
73 |
-
|
74 |
-
def compute_metrics(eval_preds):
|
75 |
-
preds, labels = eval_preds
|
76 |
-
|
77 |
-
# decode preds and labels
|
78 |
-
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
79 |
-
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
80 |
-
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
81 |
-
|
82 |
-
# rougeLSum expects newline after each sentence
|
83 |
-
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
|
84 |
-
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
|
85 |
-
|
86 |
-
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
87 |
-
|
88 |
-
return result
|
89 |
-
|
90 |
-
|
91 |
-
def training():
|
92 |
-
dataset_id = "tomasmcz/word2vec_analogy"
|
93 |
-
# dataset_id = "relbert/scientific_and_creative_analogy"
|
94 |
-
# dataset_sub = "Quadruples_Kmiecik_random_split"
|
95 |
-
print("GETTING DATASET")
|
96 |
-
dataset = load_dataset(dataset_id)
|
97 |
-
# dataset = dataset["train"]
|
98 |
-
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
99 |
-
|
100 |
-
print(dataset)
|
101 |
-
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
|
102 |
-
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0])} as value.")
|
103 |
-
print(f"- Examples look like this: {dataset['train'][0]}")
|
104 |
-
|
105 |
-
# for i in dataset["train"]:
|
106 |
-
# print(i["AB"], "to", i["CD"], "is", i["label"])
|
107 |
-
|
108 |
-
dataset = dataset["train"].train_test_split(test_size=0.3)
|
109 |
-
|
110 |
-
# We prefix our tasks with "answer the question"
|
111 |
-
prefix = "Please answer this question: "
|
112 |
-
|
113 |
-
|
114 |
-
def preprocess_function(examples):
|
115 |
-
"""Add prefix to the sentences, tokenize the text, and set the labels"""
|
116 |
-
# The "inputs" are the tokenized answer:
|
117 |
-
inputs = []
|
118 |
-
# print(examples)
|
119 |
-
# inputs = [prefix + doc for doc in examples["question"]]
|
120 |
-
for doc in examples['word_a']:
|
121 |
-
# print("THE DOC IS:", doc)
|
122 |
-
# print("THE DOC IS:", examples[i]['AB'], examples[i]['CD'], examples[i]['label'])
|
123 |
-
prompt = f"{prefix}{doc} is to "
|
124 |
-
inputs.append(prompt)
|
125 |
-
# inputs = [prefix + doc for doc in examples["question"]]
|
126 |
-
for indx, doc in enumerate(examples["word_b"]):
|
127 |
-
prompt = f"{doc} as "
|
128 |
-
inputs[indx] += prompt
|
129 |
-
|
130 |
-
for indx, doc in enumerate(examples["word_c"]):
|
131 |
-
prompt = f"{doc} is to ___."
|
132 |
-
inputs[indx] += prompt
|
133 |
-
model_inputs = tokenizer(inputs, max_length=128, truncation=True)
|
134 |
-
|
135 |
-
# print(examples["label"], type(examples["label"]))
|
136 |
-
|
137 |
-
# The "labels" are the tokenized outputs:
|
138 |
-
labels = tokenizer(text_target=examples["word_d"],
|
139 |
-
max_length=512,
|
140 |
-
truncation=True)
|
141 |
-
|
142 |
-
model_inputs["labels"] = labels["input_ids"]
|
143 |
-
return model_inputs
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
# Map the preprocessing function across our dataset
|
148 |
-
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
149 |
-
|
150 |
-
print("END DATALOADER")
|
151 |
-
|
152 |
-
# print(train_examples)
|
153 |
-
|
154 |
-
embeddings = finetune(tokenized_dataset)
|
155 |
-
|
156 |
-
return 0
|
157 |
-
|
158 |
-
|
159 |
-
def finetune(dataset):
|
160 |
-
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
161 |
-
# model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
162 |
-
model_id = "google/flan-t5-base"
|
163 |
-
# model_id = "distilbert-base-uncased"
|
164 |
-
# tokenizer = DistilBertTokenizerFast.from_pretrained(model_id)
|
165 |
-
tokenizer = T5Tokenizer.from_pretrained(model_id)
|
166 |
-
model = T5ForConditionalGeneration.from_pretrained(model_id)
|
167 |
-
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
|
168 |
-
device = torch.device('cuda:0')
|
169 |
-
model = model.to(device)
|
170 |
-
|
171 |
-
# training_args = TrainingArguments(output_dir="test_trainer")
|
172 |
-
|
173 |
-
# USE THIS LINK
|
174 |
-
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
175 |
-
|
176 |
-
# train_loss = losses.MegaBatchMarginLoss(model=model)
|
177 |
-
# ds_train, ds_valid = dataset.train_test_split(test_size=0.2, seed=42)
|
178 |
-
|
179 |
-
print("BEGIN FIT")
|
180 |
-
|
181 |
-
trainer = Seq2SeqTrainer(
|
182 |
-
model=model,
|
183 |
-
args=training_args,
|
184 |
-
train_dataset=dataset["train"],
|
185 |
-
eval_dataset=dataset["test"],
|
186 |
-
# evaluation_strategy="no"
|
187 |
-
tokenizer=tokenizer,
|
188 |
-
data_collator=data_collator,
|
189 |
-
compute_metrics=compute_metrics
|
190 |
-
)
|
191 |
-
|
192 |
-
# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
193 |
-
|
194 |
-
trainer.train()
|
195 |
-
|
196 |
-
# model.save("flan-analogies")
|
197 |
-
|
198 |
-
# model.save_to_hub("smhavens/bert-base-analogies")
|
199 |
-
# accuracy = compute_metrics(eval, metric)
|
200 |
-
return 0
|
201 |
-
|
202 |
-
def greet(name):
|
203 |
-
return "Hello " + name + "!!"
|
204 |
-
|
205 |
-
def check_answer(guess:str):
|
206 |
-
global guesses
|
207 |
-
global answer
|
208 |
-
guesses.append(guess)
|
209 |
-
output = ""
|
210 |
-
for guess in guesses:
|
211 |
-
output += ("- " + guess + "\n")
|
212 |
-
output = output[:-1]
|
213 |
-
|
214 |
-
if guess.lower() == answer.lower():
|
215 |
-
return "Correct!", output
|
216 |
-
else:
|
217 |
-
return "Try again!", output
|
218 |
-
|
219 |
-
def main():
|
220 |
-
print("BEGIN")
|
221 |
-
word1 = "Black"
|
222 |
-
word2 = "White"
|
223 |
-
word3 = "Sun"
|
224 |
-
global answer
|
225 |
-
answer = "Moon"
|
226 |
-
global guesses
|
227 |
-
|
228 |
-
training()
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
if __name__ == "__main__":
|
235 |
main()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import math
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
5 |
+
from transformers import TrainingArguments, Trainer
|
6 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
import numpy as np
|
11 |
+
import evaluate
|
12 |
+
import nltk
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
import subprocess
|
15 |
+
import sys
|
16 |
+
from transformers import T5Tokenizer, DataCollatorForSeq2Seq
|
17 |
+
from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer
|
18 |
+
from transformers import DataCollatorWithPadding, DistilBertTokenizerFast
|
19 |
+
from transformers import TrainingArguments
|
20 |
+
from transformers import (
|
21 |
+
BertModel,
|
22 |
+
BertTokenizerFast,
|
23 |
+
Trainer,
|
24 |
+
EvalPrediction
|
25 |
+
)
|
26 |
+
|
27 |
+
nltk.download("punkt", quiet=True)
|
28 |
+
metric = evaluate.load("rouge")
|
29 |
+
|
30 |
+
# Global Parameters
|
31 |
+
L_RATE = 3e-4
|
32 |
+
BATCH_SIZE = 8
|
33 |
+
PER_DEVICE_EVAL_BATCH = 4
|
34 |
+
WEIGHT_DECAY = 0.01
|
35 |
+
SAVE_TOTAL_LIM = 3
|
36 |
+
NUM_EPOCHS = 10
|
37 |
+
|
38 |
+
# Set up training arguments
|
39 |
+
training_args = Seq2SeqTrainingArguments(
|
40 |
+
output_dir="./results",
|
41 |
+
evaluation_strategy="epoch",
|
42 |
+
learning_rate=L_RATE,
|
43 |
+
per_device_train_batch_size=BATCH_SIZE,
|
44 |
+
per_device_eval_batch_size=PER_DEVICE_EVAL_BATCH,
|
45 |
+
weight_decay=WEIGHT_DECAY,
|
46 |
+
save_total_limit=SAVE_TOTAL_LIM,
|
47 |
+
num_train_epochs=NUM_EPOCHS,
|
48 |
+
predict_with_generate=True,
|
49 |
+
push_to_hub=False
|
50 |
+
)
|
51 |
+
|
52 |
+
model_id = "google/flan-t5-base"
|
53 |
+
tokenizer = T5Tokenizer.from_pretrained(model_id)
|
54 |
+
# tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
55 |
+
# metric = evaluate.load("accuracy")
|
56 |
+
|
57 |
+
def tokenize_function(examples):
|
58 |
+
return tokenizer(examples["stem"], padding="max_length", truncation=True)
|
59 |
+
|
60 |
+
|
61 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
62 |
+
def mean_pooling(model_output, attention_mask):
|
63 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
64 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
65 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
66 |
+
|
67 |
+
|
68 |
+
# def compute_metrics(eval_pred):
|
69 |
+
# logits, labels = eval_pred
|
70 |
+
# predictions = np.argmax(logits, axis=-1)
|
71 |
+
# metric = evaluate.load("accuracy")
|
72 |
+
# return metric.compute(predictions=predictions, references=labels)
|
73 |
+
|
74 |
+
def compute_metrics(eval_preds):
|
75 |
+
preds, labels = eval_preds
|
76 |
+
|
77 |
+
# decode preds and labels
|
78 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
79 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
80 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
81 |
+
|
82 |
+
# rougeLSum expects newline after each sentence
|
83 |
+
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
|
84 |
+
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
|
85 |
+
|
86 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
87 |
+
|
88 |
+
return result
|
89 |
+
|
90 |
+
|
91 |
+
def training():
|
92 |
+
dataset_id = "tomasmcz/word2vec_analogy"
|
93 |
+
# dataset_id = "relbert/scientific_and_creative_analogy"
|
94 |
+
# dataset_sub = "Quadruples_Kmiecik_random_split"
|
95 |
+
print("GETTING DATASET")
|
96 |
+
dataset = load_dataset(dataset_id)
|
97 |
+
# dataset = dataset["train"]
|
98 |
+
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
99 |
+
|
100 |
+
print(dataset)
|
101 |
+
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
|
102 |
+
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0])} as value.")
|
103 |
+
print(f"- Examples look like this: {dataset['train'][0]}")
|
104 |
+
|
105 |
+
# for i in dataset["train"]:
|
106 |
+
# print(i["AB"], "to", i["CD"], "is", i["label"])
|
107 |
+
|
108 |
+
dataset = dataset["train"].train_test_split(test_size=0.3)
|
109 |
+
|
110 |
+
# We prefix our tasks with "answer the question"
|
111 |
+
prefix = "Please answer this question: "
|
112 |
+
|
113 |
+
|
114 |
+
def preprocess_function(examples):
|
115 |
+
"""Add prefix to the sentences, tokenize the text, and set the labels"""
|
116 |
+
# The "inputs" are the tokenized answer:
|
117 |
+
inputs = []
|
118 |
+
# print(examples)
|
119 |
+
# inputs = [prefix + doc for doc in examples["question"]]
|
120 |
+
for doc in examples['word_a']:
|
121 |
+
# print("THE DOC IS:", doc)
|
122 |
+
# print("THE DOC IS:", examples[i]['AB'], examples[i]['CD'], examples[i]['label'])
|
123 |
+
prompt = f"{prefix}{doc} is to "
|
124 |
+
inputs.append(prompt)
|
125 |
+
# inputs = [prefix + doc for doc in examples["question"]]
|
126 |
+
for indx, doc in enumerate(examples["word_b"]):
|
127 |
+
prompt = f"{doc} as "
|
128 |
+
inputs[indx] += prompt
|
129 |
+
|
130 |
+
for indx, doc in enumerate(examples["word_c"]):
|
131 |
+
prompt = f"{doc} is to ___."
|
132 |
+
inputs[indx] += prompt
|
133 |
+
model_inputs = tokenizer(inputs, max_length=128, truncation=True)
|
134 |
+
|
135 |
+
# print(examples["label"], type(examples["label"]))
|
136 |
+
|
137 |
+
# The "labels" are the tokenized outputs:
|
138 |
+
labels = tokenizer(text_target=examples["word_d"],
|
139 |
+
max_length=512,
|
140 |
+
truncation=True)
|
141 |
+
|
142 |
+
model_inputs["labels"] = labels["input_ids"]
|
143 |
+
return model_inputs
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
# Map the preprocessing function across our dataset
|
148 |
+
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
149 |
+
|
150 |
+
print("END DATALOADER")
|
151 |
+
|
152 |
+
# print(train_examples)
|
153 |
+
|
154 |
+
embeddings = finetune(tokenized_dataset)
|
155 |
+
|
156 |
+
return 0
|
157 |
+
|
158 |
+
|
159 |
+
def finetune(dataset):
|
160 |
+
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
161 |
+
# model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
162 |
+
model_id = "google/flan-t5-base"
|
163 |
+
# model_id = "distilbert-base-uncased"
|
164 |
+
# tokenizer = DistilBertTokenizerFast.from_pretrained(model_id)
|
165 |
+
tokenizer = T5Tokenizer.from_pretrained(model_id)
|
166 |
+
model = T5ForConditionalGeneration.from_pretrained(model_id)
|
167 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
|
168 |
+
device = torch.device('cuda:0')
|
169 |
+
model = model.to(device)
|
170 |
+
|
171 |
+
# training_args = TrainingArguments(output_dir="test_trainer")
|
172 |
+
|
173 |
+
# USE THIS LINK
|
174 |
+
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
175 |
+
|
176 |
+
# train_loss = losses.MegaBatchMarginLoss(model=model)
|
177 |
+
# ds_train, ds_valid = dataset.train_test_split(test_size=0.2, seed=42)
|
178 |
+
|
179 |
+
print("BEGIN FIT")
|
180 |
+
|
181 |
+
trainer = Seq2SeqTrainer(
|
182 |
+
model=model,
|
183 |
+
args=training_args,
|
184 |
+
train_dataset=dataset["train"],
|
185 |
+
eval_dataset=dataset["test"],
|
186 |
+
# evaluation_strategy="no"
|
187 |
+
tokenizer=tokenizer,
|
188 |
+
data_collator=data_collator,
|
189 |
+
compute_metrics=compute_metrics
|
190 |
+
)
|
191 |
+
|
192 |
+
# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
193 |
+
|
194 |
+
trainer.train()
|
195 |
+
|
196 |
+
# model.save("flan-analogies")
|
197 |
+
|
198 |
+
# model.save_to_hub("smhavens/bert-base-analogies")
|
199 |
+
# accuracy = compute_metrics(eval, metric)
|
200 |
+
return 0
|
201 |
+
|
202 |
+
def greet(name):
|
203 |
+
return "Hello " + name + "!!"
|
204 |
+
|
205 |
+
def check_answer(guess:str):
|
206 |
+
global guesses
|
207 |
+
global answer
|
208 |
+
guesses.append(guess)
|
209 |
+
output = ""
|
210 |
+
for guess in guesses:
|
211 |
+
output += ("- " + guess + "\n")
|
212 |
+
output = output[:-1]
|
213 |
+
|
214 |
+
if guess.lower() == answer.lower():
|
215 |
+
return "Correct!", output
|
216 |
+
else:
|
217 |
+
return "Try again!", output
|
218 |
+
|
219 |
+
def main():
|
220 |
+
print("BEGIN")
|
221 |
+
word1 = "Black"
|
222 |
+
word2 = "White"
|
223 |
+
word3 = "Sun"
|
224 |
+
global answer
|
225 |
+
answer = "Moon"
|
226 |
+
global guesses
|
227 |
+
|
228 |
+
training()
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
if __name__ == "__main__":
|
235 |
main()
|
word_embedding.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
<<<<<<< HEAD
|
|
|
|
|
|
|
2 |
from datasets import load_dataset
|
3 |
import shutil
|
4 |
import json
|
@@ -615,6 +618,7 @@ def main():
|
|
615 |
|
616 |
|
617 |
if __name__ == "__main__":
|
|
|
618 |
=======
|
619 |
from datasets import load_dataset
|
620 |
import shutil
|
@@ -1233,4 +1237,6 @@ def main():
|
|
1233 |
|
1234 |
if __name__ == "__main__":
|
1235 |
>>>>>>> 7d5b505 (New in-context model with working UI System)
|
|
|
|
|
1236 |
main()
|
|
|
1 |
<<<<<<< HEAD
|
2 |
+
<<<<<<< HEAD
|
3 |
+
=======
|
4 |
+
>>>>>>> 5058aea (Problems)
|
5 |
from datasets import load_dataset
|
6 |
import shutil
|
7 |
import json
|
|
|
618 |
|
619 |
|
620 |
if __name__ == "__main__":
|
621 |
+
<<<<<<< HEAD
|
622 |
=======
|
623 |
from datasets import load_dataset
|
624 |
import shutil
|
|
|
1237 |
|
1238 |
if __name__ == "__main__":
|
1239 |
>>>>>>> 7d5b505 (New in-context model with working UI System)
|
1240 |
+
=======
|
1241 |
+
>>>>>>> 5058aea (Problems)
|
1242 |
main()
|