AnalogyArcade / app.py
smhavens
Gradio update for skeleton game
ba7e072
raw
history blame
4.23 kB
import gradio as gr
import spacy
import math
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
import torch
import torch.nn.functional as F
import numpy as np
import evaluate
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
metric = evaluate.load("accuracy")
return metric.compute(predictions=predictions, references=labels)
def training():
dataset = load_dataset("glue", "cola")
dataset = dataset["train"]
tokenized_datasets = dataset.map(tokenize_function, batched=True)
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
finetune(small_train_dataset, small_eval_dataset)
def finetune(train, eval):
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
training_args = TrainingArguments(output_dir="test_trainer")
# USE THIS LINK
# https://huggingface.co/blog/how-to-train-sentence-transformers
# accuracy = compute_metrics(eval, metric)
training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train,
eval_dataset=eval,
compute_metrics=compute_metrics,
)
trainer.train()
sentences = ["This is an example sentence", "Each sentence is converted"]
# model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
def greet(name):
return "Hello " + name + "!!"
def check_answer(guess:str, answer:str):
if guess.lower() == answer.lower():
return "Correct!"
else:
return "Try again!"
def main():
word1 = "Black"
word2 = "White"
word3 = "Sun"
answer = "Moon"
guesses = []
prompt = "{word1} is to {word2} as {word3} is to ____"
with gr.Blocks() as iface:
gr.Markdown(prompt)
with gr.Tab("Guess"):
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("Submit")
with gr.Accordion("Open for previous guesses"):
for guess in guesses:
gr.Markdown(guess)
text_button.click(check_answer, inputs=[text_input,answer], outputs=text_output)
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
if __name__ == "__main__":
main()