Spaces:
Sleeping
Sleeping
import gradio as gr | |
import math | |
import spacy | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers import InputExample | |
from sentence_transformers import losses | |
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification | |
from transformers import TrainingArguments, Trainer | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.data import DataLoader | |
import numpy as np | |
import evaluate | |
import nltk | |
from nltk.corpus import stopwords | |
import subprocess | |
import sys | |
from transformers import DataCollatorWithPadding | |
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl | |
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl']) | |
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
# nltk.download('stopwords') | |
# nlp = spacy.load("en_core_web_sm") | |
# stops = stopwords.words("english") | |
# answer = "Pizza" | |
guesses = [] | |
answer = "Pizza" | |
#Mean Pooling - Take attention mask into account for correct averaging | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
# def normalize(comment, lowercase, remove_stopwords): | |
# if lowercase: | |
# comment = comment.lower() | |
# comment = nlp(comment) | |
# lemmatized = list() | |
# for word in comment: | |
# lemma = word.lemma_.strip() | |
# if lemma: | |
# if not remove_stopwords or (remove_stopwords and lemma not in stops): | |
# lemmatized.append(lemma) | |
# return " ".join(lemmatized) | |
# def tokenize_function(examples): | |
# return tokenizer(examples["text"], truncation=True) | |
def compute_metrics(eval_pred): | |
logits, labels = eval_pred | |
predictions = np.argmax(logits, axis=-1) | |
metric = evaluate.load("accuracy") | |
return metric.compute(predictions=predictions, references=labels) | |
def training(): | |
dataset_id = "ag_news" | |
print("GETTING DATASET") | |
dataset = load_dataset(dataset_id) | |
# dataset = dataset["train"] | |
# tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.") | |
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0]['text'])} as value.") | |
print(f"- Examples look like this: {dataset['train'][0]}") | |
# small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) | |
# small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) | |
# dataset = dataset["train"].map(tokenize_function, batched=True) | |
# dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"]) | |
# dataset.format['type'] | |
# tokenized_news = dataset.map(tokenize_function, batched=True) | |
# model = AutoModelForSequenceClassification.from_pretrained("sentence-transformers/all-MiniLM-L6-v2", num_labels=2) | |
# print(dataset) | |
train_examples = [] | |
train_data = dataset["train"] | |
# For agility we only 1/2 of our available data | |
n_examples = dataset["train"].num_rows // 2 | |
# n_remaining = dataset["train"].num_rows - n_examples | |
# dataset_clean = {} | |
# # dataset_0 = [] | |
# # dataset_1 = [] | |
# # dataset_2 = [] | |
# # dataset_3 = [] | |
# for i in range(n_examples): | |
# dataset_clean[i] = {} | |
# dataset_clean[i]["text"] = normalize(train_data[i]["text"], lowercase=True, remove_stopwords=True) | |
# dataset_clean[i]["label"] = train_data[i]["label"] | |
# if train_data[i]["label"] == 0: | |
# dataset_0.append(dataset_clean[i]) | |
# elif train_data[i]["label"] == 1: | |
# dataset_1.append(dataset_clean[i]) | |
# elif train_data[i]["label"] == 2: | |
# dataset_2.append(dataset_clean[i]) | |
# elif train_data[i]["label"] == 3: | |
# dataset_3.append(dataset_clean[i]) | |
# n_0 = len(dataset_0) // 2 | |
# n_1 = len(dataset_1) // 2 | |
# n_2 = len(dataset_2) // 2 | |
# n_3 = len(dataset_3) // 2 | |
# print("Label lengths:", len(dataset_0), len(dataset_1), len(dataset_2), len(dataset_3)) | |
for i in range(n_examples): | |
example = train_data[i] | |
# example_opposite = dataset_clean[-(i)] | |
# print(example["text"]) | |
train_examples.append(InputExample(texts=[example['text']], label=example['label'])) | |
# for i in range(n_0): | |
# example = dataset_0[i] | |
# # example_opposite = dataset_0[-(i)] | |
# # print(example["text"]) | |
# train_examples.append(InputExample(texts=[example['text']], label=0)) | |
# for i in range(n_1): | |
# example = dataset_1[i] | |
# # example_opposite = dataset_1[-(i)] | |
# # print(example["text"]) | |
# train_examples.append(InputExample(texts=[example['text']], label=1)) | |
# for i in range(n_2): | |
# example = dataset_2[i] | |
# # example_opposite = dataset_2[-(i)] | |
# # print(example["text"]) | |
# train_examples.append(InputExample(texts=[example['text']], label=2)) | |
# for i in range(n_3): | |
# example = dataset_3[i] | |
# # example_opposite = dataset_3[-(i)] | |
# # print(example["text"]) | |
# train_examples.append(InputExample(texts=[example['text']], label=3)) | |
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25) | |
print("END DATALOADER") | |
# print(train_examples) | |
embeddings = finetune(train_dataloader) | |
return (dataset['train'].num_rows, type(dataset['train'][0]), type(dataset['train'][0]['text']), dataset['train'][0], embeddings) | |
def finetune(train_dataloader): | |
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) | |
model_id = "sentence-transformers/all-MiniLM-L6-v2" | |
model = SentenceTransformer(model_id) | |
device = torch.device('cuda:0') | |
model = model.to(device) | |
# training_args = TrainingArguments(output_dir="test_trainer") | |
# USE THIS LINK | |
# https://huggingface.co/blog/how-to-train-sentence-transformers | |
train_loss = losses.BatchHardSoftMarginTripletLoss(model=model) | |
print("BEGIN FIT") | |
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10) | |
model.save("ag_news_model") | |
model.save_to_hub("smhavens/all-MiniLM-agNews") | |
# accuracy = compute_metrics(eval, metric) | |
# training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch") | |
# trainer = Trainer( | |
# model=model, | |
# args=training_args, | |
# train_dataset=train, | |
# eval_dataset=eval, | |
# compute_metrics=compute_metrics, | |
# ) | |
# trainer.train() | |
# sentences = ["This is an example sentence", "Each sentence is converted"] | |
# # model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
# embeddings = model.encode(sentences) | |
# print(embeddings) | |
# # Sentences we want sentence embeddings for | |
# sentences = ['This is an example sentence', 'Each sentence is converted'] | |
# # Load model from HuggingFace Hub | |
# # tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
# # model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
# # Tokenize sentences | |
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
# # Compute token embeddings | |
# with torch.no_grad(): | |
# model_output = model(**encoded_input) | |
# # Perform pooling | |
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
# # Normalize embeddings | |
# sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) | |
# print("Sentence embeddings:") | |
# print(sentence_embeddings) | |
return 0 | |
def greet(name): | |
return "Hello " + name + "!!" | |
def check_answer(guess:str): | |
global guesses | |
global answer | |
guesses.append(guess) | |
output = "" | |
for guess in guesses: | |
output += ("- " + guess + "\n") | |
output = output[:-1] | |
if guess.lower() == answer.lower(): | |
return "Correct!", output | |
else: | |
return "Try again!", output | |
def main(): | |
print("BEGIN") | |
word1 = "Black" | |
word2 = "White" | |
word3 = "Sun" | |
global answer | |
answer = "Moon" | |
global guesses | |
num_rows, data_type, value, example, embeddings = training() | |
# prompt = f"{word1} is to {word2} as {word3} is to ____" | |
# with gr.Blocks() as iface: | |
# gr.Markdown(prompt) | |
# with gr.Tab("Guess"): | |
# text_input = gr.Textbox() | |
# text_output = gr.Textbox() | |
# text_button = gr.Button("Submit") | |
# with gr.Accordion("Open for previous guesses"): | |
# text_guesses = gr.Textbox() | |
# with gr.Tab("Testing"): | |
# gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}. | |
# An example is {example}. | |
# The Embeddings are {embeddings}.""") | |
# text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses]) | |
# # iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# iface.launch() | |
if __name__ == "__main__": | |
main() |