|
import spaces |
|
import gradio as gr |
|
import time |
|
import torch |
|
|
|
from PIL import Image |
|
from segment_utils import( |
|
segment_image, |
|
restore_result, |
|
) |
|
from upscale import upscale_image |
|
|
|
DEFAULT_SRC_PROMPT = "a person" |
|
DEFAULT_EDIT_PROMPT = "a person with perfect face" |
|
|
|
DEFAULT_CATEGORY = "face" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def create_demo() -> gr.Blocks: |
|
from inversion_run_base import run as base_run |
|
|
|
@spaces.GPU(duration=30) |
|
def image_to_image( |
|
input_image: Image, |
|
input_image_prompt: str, |
|
edit_prompt: str, |
|
seed: int, |
|
w1: float, |
|
num_steps: int, |
|
start_step: int, |
|
guidance_scale: float, |
|
segment_size: int, |
|
generate_size: int, |
|
upscale_prompt: str, |
|
upscale_start_size: int = 256, |
|
upscale_steps: int = 10, |
|
pre_upscale: bool = True, |
|
pre_upscale_start_size: int = 128, |
|
pre_upscale_steps: int = 30, |
|
): |
|
w2 = 1.0 |
|
run_task_time = 0 |
|
time_cost_str = '' |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
if pre_upscale: |
|
input_image = upscale_image( |
|
input_image, |
|
upscale_prompt, |
|
start_size=pre_upscale_start_size, |
|
upscale_steps=pre_upscale_steps, |
|
) |
|
input_image = input_image.resize((generate_size, generate_size)) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
run_model = base_run |
|
res_image = run_model( |
|
input_image, |
|
input_image_prompt, |
|
edit_prompt, |
|
generate_size, |
|
seed, |
|
w1, |
|
w2, |
|
num_steps, |
|
start_step, |
|
guidance_scale, |
|
) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
enhanced_image = upscale_image( |
|
res_image, |
|
upscale_prompt, |
|
start_size=upscale_start_size, |
|
upscale_steps=upscale_steps, |
|
) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
enhanced_image = enhanced_image.resize((segment_size, segment_size)) |
|
|
|
return enhanced_image, res_image, time_cost_str |
|
|
|
def get_time_cost(run_task_time, time_cost_str): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
with gr.Blocks() as demo: |
|
croper = gr.State() |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) |
|
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) |
|
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) |
|
with gr.Accordion("Advanced Options", open=False): |
|
upscale_prompt = gr.Textbox(lines=1, label="Upscale Prompt", value="a person with pefect face") |
|
upscale_start_size = gr.Number(label="Upscale Start Size", value=256) |
|
upscale_steps = gr.Number(label="Upscale Steps", value=10) |
|
pre_upscale = gr.Checkbox(label="Pre Upscale", value=True) |
|
pre_upscale_start_size = gr.Number(label="Pre Upscale Start Size", value=128) |
|
pre_upscale_steps = gr.Number(label="Pre Upscale Steps", value=30) |
|
with gr.Column(): |
|
num_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Num Steps") |
|
start_step = gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Start Step") |
|
with gr.Accordion("Advanced Options", open=False): |
|
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale") |
|
segment_size = gr.Number(label="Segment Size", value=1024) |
|
generate_size = gr.Number(label="Generate Size", value=256) |
|
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) |
|
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") |
|
with gr.Column(): |
|
seed = gr.Number(label="Seed", value=8) |
|
w1 = gr.Number(label="W1", value=1.5) |
|
g_btn = gr.Button("Edit Image") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil") |
|
with gr.Column(): |
|
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False) |
|
download_path = gr.File(label="Download the output image", interactive=False) |
|
with gr.Column(): |
|
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False) |
|
enhanced_image = gr.Image(label="Enhanced Image", format="png", type="pil", interactive=False) |
|
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) |
|
generated_image = gr.Image(label="Generated Image", format="png", type="pil", interactive=False) |
|
|
|
g_btn.click( |
|
fn=segment_image, |
|
inputs=[input_image, category, segment_size, mask_expansion, mask_dilation], |
|
outputs=[origin_area_image, croper], |
|
).success( |
|
fn=image_to_image, |
|
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, |
|
guidance_scale, segment_size, generate_size, upscale_prompt, upscale_start_size, upscale_steps, |
|
pre_upscale, pre_upscale_start_size, pre_upscale_steps], |
|
outputs=[enhanced_image, generated_image, generated_cost], |
|
).success( |
|
fn=restore_result, |
|
inputs=[croper, category, enhanced_image], |
|
outputs=[restored_image, download_path], |
|
) |
|
|
|
return demo |