Spaces:
Sleeping
Sleeping
zhiweili
commited on
Commit
•
7386f72
1
Parent(s):
ace9e93
add hair color app
Browse files- app.py +3 -0
- app_base.py +1 -9
- app_haircolor.py +142 -0
- inversion_run_base.py +8 -0
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from app_base import create_demo as create_demo_face
|
|
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
7 |
with gr.Tab(label="Face"):
|
8 |
create_demo_face()
|
|
|
|
|
9 |
|
10 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from app_base import create_demo as create_demo_face
|
4 |
+
from app_haircolor import create_demo as create_demo_haircolor
|
5 |
|
6 |
with gr.Blocks(css="style.css") as demo:
|
7 |
with gr.Tabs():
|
8 |
with gr.Tab(label="Face"):
|
9 |
create_demo_face()
|
10 |
+
with gr.Tab(label="Hair Color"):
|
11 |
+
create_demo_haircolor()
|
12 |
|
13 |
demo.launch()
|
app_base.py
CHANGED
@@ -24,14 +24,6 @@ DEFAULT_CATEGORY = "face"
|
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
-
os.system("pip freeze")
|
28 |
-
if not os.path.exists('GFPGANv1.4.pth'):
|
29 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
30 |
-
if not os.path.exists('realesr-general-x4v3.pth'):
|
31 |
-
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
32 |
-
|
33 |
-
os.makedirs('output', exist_ok=True)
|
34 |
-
|
35 |
def create_demo() -> gr.Blocks:
|
36 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
37 |
model_path = 'realesr-general-x4v3.pth'
|
@@ -40,7 +32,7 @@ def create_demo() -> gr.Blocks:
|
|
40 |
|
41 |
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2)
|
42 |
|
43 |
-
@spaces.GPU(duration=
|
44 |
def image_to_image(
|
45 |
input_image: Image,
|
46 |
input_image_prompt: str,
|
|
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def create_demo() -> gr.Blocks:
|
28 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
29 |
model_path = 'realesr-general-x4v3.pth'
|
|
|
32 |
|
33 |
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2)
|
34 |
|
35 |
+
@spaces.GPU(duration=10)
|
36 |
def image_to_image(
|
37 |
input_image: Image,
|
38 |
input_image_prompt: str,
|
app_haircolor.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
from inversion_run_base import run as base_run
|
11 |
+
from segment_utils import(
|
12 |
+
segment_image,
|
13 |
+
restore_result,
|
14 |
+
)
|
15 |
+
from gfpgan.utils import GFPGANer
|
16 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
17 |
+
from realesrgan.utils import RealESRGANer
|
18 |
+
|
19 |
+
|
20 |
+
DEFAULT_SRC_PROMPT = "a woman"
|
21 |
+
DEFAULT_EDIT_PROMPT = "a woman, with blue hair, 8k, high quality"
|
22 |
+
|
23 |
+
DEFAULT_CATEGORY = "hair"
|
24 |
+
|
25 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
+
|
27 |
+
def create_demo() -> gr.Blocks:
|
28 |
+
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
29 |
+
model_path = 'realesr-general-x4v3.pth'
|
30 |
+
half = True if torch.cuda.is_available() else False
|
31 |
+
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
32 |
+
|
33 |
+
@spaces.GPU(duration=10)
|
34 |
+
def image_to_image(
|
35 |
+
input_image: Image,
|
36 |
+
input_image_prompt: str,
|
37 |
+
edit_prompt: str,
|
38 |
+
seed: int,
|
39 |
+
w1: float,
|
40 |
+
num_steps: int,
|
41 |
+
start_step: int,
|
42 |
+
guidance_scale: float,
|
43 |
+
generate_size: int,
|
44 |
+
adapter_weights: float,
|
45 |
+
):
|
46 |
+
w2 = 1.0
|
47 |
+
run_task_time = 0
|
48 |
+
time_cost_str = ''
|
49 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
50 |
+
run_model = base_run
|
51 |
+
res_image = run_model(
|
52 |
+
input_image,
|
53 |
+
input_image_prompt,
|
54 |
+
edit_prompt,
|
55 |
+
generate_size,
|
56 |
+
seed,
|
57 |
+
w1,
|
58 |
+
w2,
|
59 |
+
num_steps,
|
60 |
+
start_step,
|
61 |
+
guidance_scale,
|
62 |
+
adapter_weights,
|
63 |
+
)
|
64 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
65 |
+
enhanced_image = enhance(res_image)
|
66 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
67 |
+
|
68 |
+
return enhanced_image, res_image, time_cost_str
|
69 |
+
|
70 |
+
def get_time_cost(run_task_time, time_cost_str):
|
71 |
+
now_time = int(time.time()*1000)
|
72 |
+
if run_task_time == 0:
|
73 |
+
time_cost_str = 'start'
|
74 |
+
else:
|
75 |
+
if time_cost_str != '':
|
76 |
+
time_cost_str += f'-->'
|
77 |
+
time_cost_str += f'{now_time - run_task_time}'
|
78 |
+
run_task_time = now_time
|
79 |
+
return run_task_time, time_cost_str
|
80 |
+
|
81 |
+
|
82 |
+
def enhance(
|
83 |
+
pil_image: Image,
|
84 |
+
):
|
85 |
+
img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
86 |
+
|
87 |
+
h, w = img.shape[0:2]
|
88 |
+
if h < 300:
|
89 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
90 |
+
output, _ = upsampler.enhance(img, outscale=2)
|
91 |
+
pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))
|
92 |
+
|
93 |
+
return pil_output
|
94 |
+
|
95 |
+
with gr.Blocks() as demo:
|
96 |
+
croper = gr.State()
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
|
100 |
+
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
101 |
+
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
102 |
+
with gr.Column():
|
103 |
+
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
|
104 |
+
start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step")
|
105 |
+
with gr.Accordion("Advanced Options", open=False):
|
106 |
+
guidance_scale = gr.Slider(minimum=0, maximum=20, value=1, step=0.5, label="Guidance Scale")
|
107 |
+
generate_size = gr.Number(label="Generate Size", value=512)
|
108 |
+
mask_expansion = gr.Number(label="Mask Expansion", value=10, visible=True)
|
109 |
+
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
110 |
+
adapter_weights = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Adapter Weights", visible=False)
|
111 |
+
with gr.Column():
|
112 |
+
seed = gr.Number(label="Seed", value=8)
|
113 |
+
w1 = gr.Number(label="W1", value=2)
|
114 |
+
g_btn = gr.Button("Edit Image")
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column():
|
118 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
119 |
+
with gr.Column():
|
120 |
+
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
|
121 |
+
download_path = gr.File(label="Download the output image", interactive=False)
|
122 |
+
with gr.Column():
|
123 |
+
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
|
124 |
+
enhanced_image = gr.Image(label="Enhanced Image", type="pil", interactive=False)
|
125 |
+
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
126 |
+
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
|
127 |
+
|
128 |
+
g_btn.click(
|
129 |
+
fn=segment_image,
|
130 |
+
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
|
131 |
+
outputs=[origin_area_image, croper],
|
132 |
+
).success(
|
133 |
+
fn=image_to_image,
|
134 |
+
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, adapter_weights],
|
135 |
+
outputs=[enhanced_image, generated_image, generated_cost],
|
136 |
+
).success(
|
137 |
+
fn=restore_result,
|
138 |
+
inputs=[croper, category, enhanced_image],
|
139 |
+
outputs=[restored_image, download_path],
|
140 |
+
)
|
141 |
+
|
142 |
+
return demo
|
inversion_run_base.py
CHANGED
@@ -12,6 +12,14 @@ from config import get_config, get_num_steps_actual
|
|
12 |
from functools import partial
|
13 |
from compel import Compel, ReturnedEmbeddingsType
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
class Object(object):
|
16 |
pass
|
17 |
|
|
|
12 |
from functools import partial
|
13 |
from compel import Compel, ReturnedEmbeddingsType
|
14 |
|
15 |
+
os.system("pip freeze")
|
16 |
+
if not os.path.exists('GFPGANv1.4.pth'):
|
17 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
18 |
+
if not os.path.exists('realesr-general-x4v3.pth'):
|
19 |
+
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
20 |
+
|
21 |
+
os.makedirs('output', exist_ok=True)
|
22 |
+
|
23 |
class Object(object):
|
24 |
pass
|
25 |
|