turbo_inversion / enhance_utils.py
zhiweili
add enhance utils
813fcc1
import os
import torch
import cv2
import numpy as np
from PIL import Image
from gfpgan.utils import GFPGANer
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
os.system("pip freeze")
if not os.path.exists('GFPGANv1.4.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('realesr-general-x4v3.pth'):
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
os.makedirs('output', exist_ok=True)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2)
def enhance_image(
pil_image: Image,
enhance_face: bool = True,
):
img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if enhance_face:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=True, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=2)
pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))
return pil_output