turbo_inversion / app_base.py
zhiweili
add realvxl_adapter
8fda951
raw
history blame
6.15 kB
import spaces
import gradio as gr
import time
import torch
import os
import numpy as np
import cv2
from PIL import Image
from segment_utils import(
segment_image,
restore_result,
)
from gfpgan.utils import GFPGANer
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
DEFAULT_SRC_PROMPT = "a woman, photo"
DEFAULT_EDIT_PROMPT = "a beautiful woman, photo, hollywood style face, 8k, high quality"
DEFAULT_CATEGORY = "face"
device = "cuda" if torch.cuda.is_available() else "cpu"
def create_demo() -> gr.Blocks:
from inversion_run_base import run as base_run
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2)
@spaces.GPU(duration=10)
def image_to_image(
input_image: Image,
input_image_prompt: str,
edit_prompt: str,
seed: int,
w1: float,
num_steps: int,
start_step: int,
guidance_scale: float,
generate_size: int,
adapter_weights: float,
enhance_face: bool = True,
):
w2 = 1.0
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
run_model = base_run
res_image = run_model(
input_image,
input_image_prompt,
edit_prompt,
generate_size,
seed,
w1,
w2,
num_steps,
start_step,
guidance_scale,
adapter_weights,
)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
enhanced_image = enhance(res_image, enhance_face)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return enhanced_image, res_image, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def enhance(
pil_image: Image,
enhance_face: bool = True,
):
img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if enhance_face:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=True, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=2)
pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB))
return pil_output
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step")
with gr.Accordion("Advanced Options", open=False):
guidance_scale = gr.Slider(minimum=0, maximum=20, value=1, step=0.5, label="Guidance Scale")
generate_size = gr.Number(label="Generate Size", value=512)
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
enhance_face = gr.Checkbox(label="Enhance Face", value=True)
adapter_weights = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Adapter Weights", visible=False)
with gr.Column():
seed = gr.Number(label="Seed", value=8)
w1 = gr.Number(label="W1", value=2)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
download_path = gr.File(label="Download the output image", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
enhanced_image = gr.Image(label="Enhanced Image", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, adapter_weights, enhance_face],
outputs=[enhanced_image, generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, enhanced_image],
outputs=[restored_image, download_path],
)
return demo