turbo_inversion / app_haircolor.py
zhiweili
add enhance utils
813fcc1
raw
history blame
5.25 kB
import spaces
import gradio as gr
import time
import torch
import numpy as np
import cv2
from PIL import Image
from segment_utils import(
segment_image,
restore_result,
)
from enhance_utils import enhance_image
DEFAULT_SRC_PROMPT = "a woman"
DEFAULT_EDIT_PROMPT = "a woman, with blue hair, 8k, high quality"
DEFAULT_CATEGORY = "hair"
device = "cuda" if torch.cuda.is_available() else "cpu"
def create_demo() -> gr.Blocks:
from inversion_run_adapter import run as adapter_run
@spaces.GPU(duration=10)
def image_to_image(
input_image: Image,
input_image_prompt: str,
edit_prompt: str,
seed: int,
w1: float,
num_steps: int,
start_step: int,
guidance_scale: float,
generate_size: int,
lineart_scale: float,
canny_scale: float,
sketch_scale: float,
):
w2 = 1.0
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
run_model = adapter_run
res_image = run_model(
input_image,
input_image_prompt,
edit_prompt,
generate_size,
seed,
w1,
w2,
num_steps,
start_step,
guidance_scale,
lineart_scale,
canny_scale,
sketch_scale,
)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
enhanced_image = enhance_image(res_image, False)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return enhanced_image, res_image, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Num Steps")
start_step = gr.Slider(minimum=1, maximum=100, value=2, step=1, label="Start Step")
with gr.Accordion("Advanced Options", open=False):
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale", visible=False)
generate_size = gr.Number(label="Generate Size", value=512)
mask_expansion = gr.Number(label="Mask Expansion", value=10, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
lineart_scale = gr.Slider(minimum=0, maximum=5, value=1, step=0.1, label="Lineart Weights", visible=True)
canny_scale = gr.Slider(minimum=0, maximum=5, value=0.8, step=0.1, label="Canny Weights", visible=True)
sketch_scale = gr.Slider(minimum=0, maximum=5, value=1.1, step=0.1, label="Sketch Weights", visible=True)
with gr.Column():
seed = gr.Number(label="Seed", value=8)
w1 = gr.Number(label="W1", value=2.5)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
download_path = gr.File(label="Download the output image", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
enhanced_image = gr.Image(label="Enhanced Image", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, lineart_scale, canny_scale, sketch_scale],
outputs=[enhanced_image, generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, enhanced_image],
outputs=[restored_image, download_path],
)
return demo