|
import torch |
|
import os |
|
import PIL |
|
|
|
from typing import List, Optional, Union |
|
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput |
|
from PIL import Image |
|
from diffusers.utils import logging |
|
|
|
VECTOR_DATA_FOLDER = "vector_data" |
|
VECTOR_DATA_DICT = "vector_data" |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def get_ddpm_inversion_scheduler( |
|
scheduler, |
|
step_function, |
|
config, |
|
timesteps, |
|
save_timesteps, |
|
latents, |
|
x_ts, |
|
x_ts_c_hat, |
|
save_intermediate_results, |
|
pipe, |
|
x_0, |
|
v1s_images, |
|
v2s_images, |
|
deltas_images, |
|
v1_x0s, |
|
v2_x0s, |
|
deltas_x0s, |
|
folder_name, |
|
image_name, |
|
time_measure_n, |
|
): |
|
def step( |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
): |
|
|
|
|
|
res_inv = step_save_latents( |
|
scheduler, |
|
model_output[:1, :, :, :], |
|
timestep, |
|
sample[:1, :, :, :], |
|
eta, |
|
use_clipped_model_output, |
|
generator, |
|
variance_noise, |
|
return_dict, |
|
) |
|
|
|
|
|
|
|
res_inf = step_use_latents( |
|
scheduler, |
|
model_output[1:, :, :, :], |
|
timestep, |
|
sample[1:, :, :, :], |
|
eta, |
|
use_clipped_model_output, |
|
generator, |
|
variance_noise, |
|
return_dict, |
|
) |
|
|
|
res = (torch.cat((res_inv[0], res_inf[0]), dim=0),) |
|
return res |
|
|
|
|
|
scheduler.step_function = step_function |
|
scheduler.is_save = True |
|
scheduler._timesteps = timesteps |
|
scheduler._save_timesteps = save_timesteps if save_timesteps else timesteps |
|
scheduler._config = config |
|
scheduler.latents = latents |
|
scheduler.x_ts = x_ts |
|
scheduler.x_ts_c_hat = x_ts_c_hat |
|
scheduler.step = step |
|
scheduler.save_intermediate_results = save_intermediate_results |
|
scheduler.pipe = pipe |
|
scheduler.v1s_images = v1s_images |
|
scheduler.v2s_images = v2s_images |
|
scheduler.deltas_images = deltas_images |
|
scheduler.v1_x0s = v1_x0s |
|
scheduler.v2_x0s = v2_x0s |
|
scheduler.deltas_x0s = deltas_x0s |
|
scheduler.clean_step_run = False |
|
scheduler.x_0s = create_xts( |
|
config.noise_shift_delta, |
|
config.noise_timesteps, |
|
config.clean_step_timestep, |
|
None, |
|
pipe.scheduler, |
|
timesteps, |
|
x_0, |
|
no_add_noise=True, |
|
) |
|
scheduler.folder_name = folder_name |
|
scheduler.image_name = image_name |
|
scheduler.p_to_p = False |
|
scheduler.p_to_p_replace = False |
|
scheduler.time_measure_n = time_measure_n |
|
return scheduler |
|
|
|
def step_save_latents( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
): |
|
|
|
|
|
|
|
timestep_index = self._save_timesteps.index(timestep) if not self.clean_step_run else -1 |
|
next_timestep_index = timestep_index + 1 if not self.clean_step_run else -1 |
|
u_hat_t = self.step_function( |
|
model_output=model_output, |
|
timestep=timestep, |
|
sample=sample, |
|
eta=eta, |
|
use_clipped_model_output=use_clipped_model_output, |
|
generator=generator, |
|
variance_noise=variance_noise, |
|
return_dict=False, |
|
scheduler=self, |
|
) |
|
|
|
x_t_minus_1 = self.x_ts[next_timestep_index] |
|
self.x_ts_c_hat.append(u_hat_t) |
|
|
|
z_t = x_t_minus_1 - u_hat_t |
|
self.latents.append(z_t) |
|
z_t, _ = normalize(z_t, timestep_index, self._config.max_norm_zs) |
|
|
|
x_t_minus_1_predicted = u_hat_t + z_t |
|
|
|
if not return_dict: |
|
return (x_t_minus_1_predicted,) |
|
|
|
return DDIMSchedulerOutput(prev_sample=x_t_minus_1, pred_original_sample=None) |
|
|
|
def step_use_latents( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
): |
|
|
|
timestep_index = self._timesteps.index(timestep) if not self.clean_step_run else -1 |
|
next_timestep_index = ( |
|
timestep_index + 1 if not self.clean_step_run else -1 |
|
) |
|
z_t = self.latents[next_timestep_index] |
|
|
|
_, normalize_coefficient = normalize( |
|
z_t[0] if self._config.breakdown == "x_t_hat_c_with_zeros" else z_t, |
|
timestep_index, |
|
self._config.max_norm_zs, |
|
) |
|
|
|
if normalize_coefficient == 0: |
|
eta = 0 |
|
|
|
|
|
|
|
x_t_hat_c_hat = self.step_function( |
|
model_output=model_output, |
|
timestep=timestep, |
|
sample=sample, |
|
eta=eta, |
|
use_clipped_model_output=use_clipped_model_output, |
|
generator=generator, |
|
variance_noise=variance_noise, |
|
return_dict=False, |
|
scheduler=self, |
|
) |
|
|
|
w1 = self._config.ws1[timestep_index] |
|
w2 = self._config.ws2[timestep_index] |
|
|
|
x_t_minus_1_exact = self.x_ts[next_timestep_index] |
|
x_t_minus_1_exact = x_t_minus_1_exact.expand_as(x_t_hat_c_hat) |
|
|
|
x_t_c_hat: torch.Tensor = self.x_ts_c_hat[next_timestep_index] |
|
if self._config.breakdown == "x_t_c_hat": |
|
raise NotImplementedError("breakdown x_t_c_hat not implemented yet") |
|
|
|
|
|
x_t_c = x_t_c_hat[0].expand_as(x_t_hat_c_hat) |
|
|
|
|
|
|
|
|
|
if ( |
|
self._config.breakdown == "x_t_hat_c" |
|
or self._config.breakdown == "x_t_hat_c_with_zeros" |
|
): |
|
zero_index_reconstruction = 1 if not self.time_measure_n else 0 |
|
edit_prompts_num = ( |
|
(model_output.size(0) - zero_index_reconstruction) // 3 |
|
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p |
|
else (model_output.size(0) - zero_index_reconstruction) // 2 |
|
) |
|
x_t_hat_c_indices = (zero_index_reconstruction, edit_prompts_num + zero_index_reconstruction) |
|
edit_images_indices = ( |
|
edit_prompts_num + zero_index_reconstruction, |
|
( |
|
model_output.size(0) |
|
if self._config.breakdown == "x_t_hat_c" |
|
else zero_index_reconstruction + 2 * edit_prompts_num |
|
), |
|
) |
|
x_t_hat_c = torch.zeros_like(x_t_hat_c_hat) |
|
x_t_hat_c[edit_images_indices[0] : edit_images_indices[1]] = x_t_hat_c_hat[ |
|
x_t_hat_c_indices[0] : x_t_hat_c_indices[1] |
|
] |
|
v1 = x_t_hat_c_hat - x_t_hat_c |
|
v2 = x_t_hat_c - normalize_coefficient * x_t_c |
|
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p: |
|
path = os.path.join( |
|
self.folder_name, |
|
VECTOR_DATA_FOLDER, |
|
self.image_name, |
|
) |
|
if not hasattr(self, VECTOR_DATA_DICT): |
|
os.makedirs(path, exist_ok=True) |
|
self.vector_data = dict() |
|
|
|
x_t_0 = x_t_c_hat[1] |
|
empty_prompt_indices = (1 + 2 * edit_prompts_num, 1 + 3 * edit_prompts_num) |
|
x_t_hat_0 = x_t_hat_c_hat[empty_prompt_indices[0] : empty_prompt_indices[1]] |
|
|
|
self.vector_data[timestep.item()] = dict() |
|
self.vector_data[timestep.item()]["x_t_hat_c"] = x_t_hat_c[ |
|
edit_images_indices[0] : edit_images_indices[1] |
|
] |
|
self.vector_data[timestep.item()]["x_t_hat_0"] = x_t_hat_0 |
|
self.vector_data[timestep.item()]["x_t_c"] = x_t_c[0].expand_as(x_t_hat_0) |
|
self.vector_data[timestep.item()]["x_t_0"] = x_t_0.expand_as(x_t_hat_0) |
|
self.vector_data[timestep.item()]["x_t_hat_c_hat"] = x_t_hat_c_hat[ |
|
edit_images_indices[0] : edit_images_indices[1] |
|
] |
|
self.vector_data[timestep.item()]["x_t_minus_1_noisy"] = x_t_minus_1_exact[ |
|
0 |
|
].expand_as(x_t_hat_0) |
|
self.vector_data[timestep.item()]["x_t_minus_1_clean"] = self.x_0s[ |
|
next_timestep_index |
|
].expand_as(x_t_hat_0) |
|
|
|
else: |
|
v1 = x_t_hat_c_hat - normalize_coefficient * x_t_c |
|
v2 = 0 |
|
|
|
if self.save_intermediate_results and not self.p_to_p: |
|
delta = v1 + v2 |
|
v1_plus_x0 = self.x_0s[next_timestep_index] + v1 |
|
v2_plus_x0 = self.x_0s[next_timestep_index] + v2 |
|
delta_plus_x0 = self.x_0s[next_timestep_index] + delta |
|
|
|
v1_images = decode_latents(v1, self.pipe) |
|
self.v1s_images.append(v1_images) |
|
v2_images = ( |
|
decode_latents(v2, self.pipe) |
|
if self._config.breakdown != "no_breakdown" |
|
else [PIL.Image.new("RGB", (1, 1))] |
|
) |
|
self.v2s_images.append(v2_images) |
|
delta_images = decode_latents(delta, self.pipe) |
|
self.deltas_images.append(delta_images) |
|
v1_plus_x0_images = decode_latents(v1_plus_x0, self.pipe) |
|
self.v1_x0s.append(v1_plus_x0_images) |
|
v2_plus_x0_images = ( |
|
decode_latents(v2_plus_x0, self.pipe) |
|
if self._config.breakdown != "no_breakdown" |
|
else [PIL.Image.new("RGB", (1, 1))] |
|
) |
|
self.v2_x0s.append(v2_plus_x0_images) |
|
delta_plus_x0_images = decode_latents(delta_plus_x0, self.pipe) |
|
self.deltas_x0s.append(delta_plus_x0_images) |
|
|
|
|
|
|
|
|
|
|
|
|
|
x_t_minus_1 = normalize_coefficient * x_t_minus_1_exact + w1 * v1 + w2 * v2 |
|
|
|
if ( |
|
self._config.breakdown == "x_t_hat_c" |
|
or self._config.breakdown == "x_t_hat_c_with_zeros" |
|
): |
|
x_t_minus_1[x_t_hat_c_indices[0] : x_t_hat_c_indices[1]] = x_t_minus_1[ |
|
edit_images_indices[0] : edit_images_indices[1] |
|
] |
|
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p: |
|
x_t_minus_1[empty_prompt_indices[0] : empty_prompt_indices[1]] = ( |
|
x_t_minus_1[edit_images_indices[0] : edit_images_indices[1]] |
|
) |
|
self.vector_data[timestep.item()]["x_t_minus_1_edited"] = x_t_minus_1[ |
|
edit_images_indices[0] : edit_images_indices[1] |
|
] |
|
if timestep == self._timesteps[-1]: |
|
torch.save( |
|
self.vector_data, |
|
os.path.join( |
|
path, |
|
f"{VECTOR_DATA_DICT}.pt", |
|
), |
|
) |
|
|
|
if not self.time_measure_n: |
|
x_t_minus_1[0] = x_t_minus_1_exact[0] |
|
|
|
if not return_dict: |
|
return (x_t_minus_1,) |
|
|
|
return DDIMSchedulerOutput( |
|
prev_sample=x_t_minus_1, |
|
pred_original_sample=None, |
|
) |
|
|
|
def create_xts( |
|
noise_shift_delta, |
|
noise_timesteps, |
|
clean_step_timestep, |
|
generator, |
|
scheduler, |
|
timesteps, |
|
x_0, |
|
no_add_noise=False, |
|
): |
|
if noise_timesteps is None: |
|
noising_delta = noise_shift_delta * (timesteps[0] - timesteps[1]) |
|
noise_timesteps = [timestep - int(noising_delta) for timestep in timesteps] |
|
|
|
first_x_0_idx = len(noise_timesteps) |
|
for i in range(len(noise_timesteps)): |
|
if noise_timesteps[i] <= 0: |
|
first_x_0_idx = i |
|
break |
|
|
|
noise_timesteps = noise_timesteps[:first_x_0_idx] |
|
|
|
x_0_expanded = x_0.expand(len(noise_timesteps), -1, -1, -1) |
|
noise = ( |
|
torch.randn(x_0_expanded.size(), generator=generator, device="cpu").to( |
|
x_0.device |
|
) |
|
if not no_add_noise |
|
else torch.zeros_like(x_0_expanded) |
|
) |
|
x_ts = scheduler.add_noise( |
|
x_0_expanded, |
|
noise, |
|
torch.IntTensor(noise_timesteps), |
|
) |
|
x_ts = [t.unsqueeze(dim=0) for t in list(x_ts)] |
|
x_ts += [x_0] * (len(timesteps) - first_x_0_idx) |
|
x_ts += [x_0] |
|
if clean_step_timestep > 0: |
|
x_ts += [x_0] |
|
return x_ts |
|
|
|
def normalize( |
|
z_t, |
|
i, |
|
max_norm_zs, |
|
): |
|
max_norm = max_norm_zs[i] |
|
if max_norm < 0: |
|
return z_t, 1 |
|
|
|
norm = torch.norm(z_t) |
|
if norm < max_norm: |
|
return z_t, 1 |
|
|
|
coeff = max_norm / norm |
|
z_t = z_t * coeff |
|
return z_t, coeff |
|
|
|
def decode_latents(latent, pipe): |
|
latent_img = pipe.vae.decode( |
|
latent / pipe.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
return pipe.image_processor.postprocess(latent_img, output_type="pil") |
|
|
|
def deterministic_ddim_step( |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
scheduler=None, |
|
): |
|
|
|
if scheduler.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
prev_timestep = ( |
|
timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps |
|
) |
|
|
|
|
|
alpha_prod_t = scheduler.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = ( |
|
scheduler.alphas_cumprod[prev_timestep] |
|
if prev_timestep >= 0 |
|
else scheduler.final_alpha_cumprod |
|
) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
if scheduler.config.prediction_type == "epsilon": |
|
pred_original_sample = ( |
|
sample - beta_prod_t ** (0.5) * model_output |
|
) / alpha_prod_t ** (0.5) |
|
pred_epsilon = model_output |
|
elif scheduler.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
pred_epsilon = ( |
|
sample - alpha_prod_t ** (0.5) * pred_original_sample |
|
) / beta_prod_t ** (0.5) |
|
elif scheduler.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - ( |
|
beta_prod_t**0.5 |
|
) * model_output |
|
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction`" |
|
) |
|
|
|
|
|
if scheduler.config.thresholding: |
|
pred_original_sample = scheduler._threshold_sample(pred_original_sample) |
|
elif scheduler.config.clip_sample: |
|
pred_original_sample = pred_original_sample.clamp( |
|
-scheduler.config.clip_sample_range, |
|
scheduler.config.clip_sample_range, |
|
) |
|
|
|
|
|
|
|
variance = scheduler._get_variance(timestep, prev_timestep) |
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
if use_clipped_model_output: |
|
|
|
pred_epsilon = ( |
|
sample - alpha_prod_t ** (0.5) * pred_original_sample |
|
) / beta_prod_t ** (0.5) |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** ( |
|
0.5 |
|
) * pred_epsilon |
|
|
|
|
|
prev_sample = ( |
|
alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
) |
|
return prev_sample |
|
|
|
|
|
def deterministic_euler_step( |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
eta, |
|
use_clipped_model_output, |
|
generator, |
|
variance_noise, |
|
return_dict, |
|
scheduler, |
|
): |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if scheduler.step_index is None: |
|
scheduler._init_step_index(timestep) |
|
|
|
sigma = scheduler.sigmas[scheduler.step_index] |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
|
|
if scheduler.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma * model_output |
|
elif scheduler.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + ( |
|
sample / (sigma**2 + 1) |
|
) |
|
elif scheduler.config.prediction_type == "sample": |
|
raise NotImplementedError("prediction_type not implemented yet: sample") |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
sigma_from = scheduler.sigmas[scheduler.step_index] |
|
sigma_to = scheduler.sigmas[scheduler.step_index + 1] |
|
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 |
|
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma |
|
|
|
dt = sigma_down - sigma |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
scheduler._step_index += 1 |
|
|
|
return prev_sample |
|
|
|
|
|
def deterministic_non_ancestral_euler_step( |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
scheduler=None, |
|
): |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
s_churn (`float`): |
|
s_tmin (`float`): |
|
s_tmax (`float`): |
|
s_noise (`float`, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or |
|
tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not scheduler.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if scheduler.step_index is None: |
|
scheduler._init_step_index(timestep) |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
sigma = scheduler.sigmas[scheduler.step_index] |
|
|
|
gamma = ( |
|
min(s_churn / (len(scheduler.sigmas) - 1), 2**0.5 - 1) |
|
if s_tmin <= sigma <= s_tmax |
|
else 0.0 |
|
) |
|
|
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
|
|
|
|
|
|
if ( |
|
scheduler.config.prediction_type == "original_sample" |
|
or scheduler.config.prediction_type == "sample" |
|
): |
|
pred_original_sample = model_output |
|
elif scheduler.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma_hat * model_output |
|
elif scheduler.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + ( |
|
sample / (sigma**2 + 1) |
|
) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
dt = scheduler.sigmas[scheduler.step_index + 1] - sigma_hat |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
scheduler._step_index += 1 |
|
|
|
return prev_sample |
|
|
|
|
|
def deterministic_ddpm_step( |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
eta, |
|
use_clipped_model_output, |
|
generator, |
|
variance_noise, |
|
return_dict, |
|
scheduler, |
|
): |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
t = timestep |
|
|
|
prev_t = scheduler.previous_timestep(t) |
|
|
|
if model_output.shape[1] == sample.shape[1] * 2 and scheduler.variance_type in [ |
|
"learned", |
|
"learned_range", |
|
]: |
|
model_output, predicted_variance = torch.split( |
|
model_output, sample.shape[1], dim=1 |
|
) |
|
else: |
|
predicted_variance = None |
|
|
|
|
|
alpha_prod_t = scheduler.alphas_cumprod[t] |
|
alpha_prod_t_prev = ( |
|
scheduler.alphas_cumprod[prev_t] if prev_t >= 0 else scheduler.one |
|
) |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
current_alpha_t = alpha_prod_t / alpha_prod_t_prev |
|
current_beta_t = 1 - current_alpha_t |
|
|
|
|
|
|
|
if scheduler.config.prediction_type == "epsilon": |
|
pred_original_sample = ( |
|
sample - beta_prod_t ** (0.5) * model_output |
|
) / alpha_prod_t ** (0.5) |
|
elif scheduler.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
elif scheduler.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - ( |
|
beta_prod_t**0.5 |
|
) * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample` or" |
|
" `v_prediction` for the DDPMScheduler." |
|
) |
|
|
|
|
|
if scheduler.config.thresholding: |
|
pred_original_sample = scheduler._threshold_sample(pred_original_sample) |
|
elif scheduler.config.clip_sample: |
|
pred_original_sample = pred_original_sample.clamp( |
|
-scheduler.config.clip_sample_range, scheduler.config.clip_sample_range |
|
) |
|
|
|
|
|
|
|
pred_original_sample_coeff = ( |
|
alpha_prod_t_prev ** (0.5) * current_beta_t |
|
) / beta_prod_t |
|
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t |
|
|
|
|
|
|
|
pred_prev_sample = ( |
|
pred_original_sample_coeff * pred_original_sample |
|
+ current_sample_coeff * sample |
|
) |
|
|
|
return pred_prev_sample |
|
|