Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
·
e2f86ff
1
Parent(s):
9d380a5
add t2i-adapter-sketch
Browse files- app_haircolor.py +26 -7
app_haircolor.py
CHANGED
@@ -17,9 +17,11 @@ from diffusers import (
|
|
17 |
from controlnet_aux import (
|
18 |
LineartDetector,
|
19 |
CannyDetector,
|
|
|
|
|
20 |
)
|
21 |
|
22 |
-
BASE_MODEL = "
|
23 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
DEFAULT_EDIT_PROMPT = "a woman, blue hair, high detailed"
|
@@ -30,8 +32,16 @@ DEFAULT_CATEGORY = "hair"
|
|
30 |
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
31 |
lineart_detector = lineart_detector.to(DEVICE)
|
32 |
|
|
|
|
|
|
|
33 |
canndy_detector = CannyDetector()
|
34 |
|
|
|
|
|
|
|
|
|
|
|
35 |
adapters = MultiAdapter(
|
36 |
[
|
37 |
T2IAdapter.from_pretrained(
|
@@ -44,6 +54,11 @@ adapters = MultiAdapter(
|
|
44 |
torch_dtype=torch.float16,
|
45 |
varient="fp16",
|
46 |
),
|
|
|
|
|
|
|
|
|
|
|
47 |
]
|
48 |
)
|
49 |
adapters = adapters.to(torch.float16)
|
@@ -61,7 +76,7 @@ basepipeline = basepipeline.to(DEVICE)
|
|
61 |
|
62 |
basepipeline.enable_model_cpu_offload()
|
63 |
|
64 |
-
@spaces.GPU(duration=
|
65 |
def image_to_image(
|
66 |
input_image: Image,
|
67 |
edit_prompt: str,
|
@@ -71,6 +86,7 @@ def image_to_image(
|
|
71 |
generate_size: int,
|
72 |
lineart_scale: float = 1.0,
|
73 |
canny_scale: float = 0.5,
|
|
|
74 |
):
|
75 |
run_task_time = 0
|
76 |
time_cost_str = ''
|
@@ -79,9 +95,11 @@ def image_to_image(
|
|
79 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
80 |
canny_image = canndy_detector(input_image, 384, generate_size)
|
81 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
|
82 |
|
83 |
-
cond_image = [lineart_image, canny_image]
|
84 |
-
cond_scale = [lineart_scale, canny_scale]
|
85 |
|
86 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
87 |
generated_image = basepipeline(
|
@@ -127,8 +145,9 @@ def create_demo() -> gr.Blocks:
|
|
127 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
128 |
with gr.Column():
|
129 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
130 |
-
lineart_scale = gr.Slider(minimum=0, maximum=
|
131 |
-
canny_scale = gr.Slider(minimum=0, maximum=
|
|
|
132 |
g_btn = gr.Button("Edit Image")
|
133 |
|
134 |
with gr.Row():
|
@@ -147,7 +166,7 @@ def create_demo() -> gr.Blocks:
|
|
147 |
outputs=[origin_area_image, croper],
|
148 |
).success(
|
149 |
fn=image_to_image,
|
150 |
-
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, lineart_scale, canny_scale],
|
151 |
outputs=[generated_image, generated_cost],
|
152 |
).success(
|
153 |
fn=restore_result,
|
|
|
17 |
from controlnet_aux import (
|
18 |
LineartDetector,
|
19 |
CannyDetector,
|
20 |
+
PidiNetDetector,
|
21 |
+
MidasDetector,
|
22 |
)
|
23 |
|
24 |
+
BASE_MODEL = "stabilityai/sdxl-turbo"
|
25 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
DEFAULT_EDIT_PROMPT = "a woman, blue hair, high detailed"
|
|
|
32 |
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
33 |
lineart_detector = lineart_detector.to(DEVICE)
|
34 |
|
35 |
+
pidinet_detector = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
36 |
+
pidinet_detector = pidinet_detector.to(DEVICE)
|
37 |
+
|
38 |
canndy_detector = CannyDetector()
|
39 |
|
40 |
+
midas_detector = MidasDetector.from_pretrained(
|
41 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
|
42 |
+
)
|
43 |
+
midas_detector = midas_detector.to(DEVICE)
|
44 |
+
|
45 |
adapters = MultiAdapter(
|
46 |
[
|
47 |
T2IAdapter.from_pretrained(
|
|
|
54 |
torch_dtype=torch.float16,
|
55 |
varient="fp16",
|
56 |
),
|
57 |
+
T2IAdapter.from_pretrained(
|
58 |
+
"TencentARC/t2i-adapter-sketch-sdxl-1.0",
|
59 |
+
torch_dtype=torch.float16,
|
60 |
+
varient="fp16",
|
61 |
+
),
|
62 |
]
|
63 |
)
|
64 |
adapters = adapters.to(torch.float16)
|
|
|
76 |
|
77 |
basepipeline.enable_model_cpu_offload()
|
78 |
|
79 |
+
@spaces.GPU(duration=15)
|
80 |
def image_to_image(
|
81 |
input_image: Image,
|
82 |
edit_prompt: str,
|
|
|
86 |
generate_size: int,
|
87 |
lineart_scale: float = 1.0,
|
88 |
canny_scale: float = 0.5,
|
89 |
+
sketch_scale:float = 0.5,
|
90 |
):
|
91 |
run_task_time = 0
|
92 |
time_cost_str = ''
|
|
|
95 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
96 |
canny_image = canndy_detector(input_image, 384, generate_size)
|
97 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
98 |
+
sketch_image = pidinet_detector(input_image, 512, generate_size)
|
99 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
100 |
|
101 |
+
cond_image = [lineart_image, canny_image, sketch_image]
|
102 |
+
cond_scale = [lineart_scale, canny_scale, sketch_scale]
|
103 |
|
104 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
105 |
generated_image = basepipeline(
|
|
|
145 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
146 |
with gr.Column():
|
147 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
148 |
+
lineart_scale = gr.Slider(minimum=0, maximum=5, value=1, step=0.1, label="Lineart Scale")
|
149 |
+
canny_scale = gr.Slider(minimum=0, maximum=5, value=0.7, step=0.1, label="Canny Scale")
|
150 |
+
sketch_scale = gr.Slider(minimum=0, maximum=5, value=1, step=0.1, label="Sketch Scale")
|
151 |
g_btn = gr.Button("Edit Image")
|
152 |
|
153 |
with gr.Row():
|
|
|
166 |
outputs=[origin_area_image, croper],
|
167 |
).success(
|
168 |
fn=image_to_image,
|
169 |
+
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, lineart_scale, canny_scale, sketch_scale],
|
170 |
outputs=[generated_image, generated_cost],
|
171 |
).success(
|
172 |
fn=restore_result,
|